login
A254707
Expansion of (1 + 2*x^2) / ((1 - x^2)^2 * (1 - x^3) * (1 - x^4)) in powers of x.
3
1, 0, 4, 1, 8, 4, 15, 8, 25, 15, 38, 25, 55, 38, 77, 55, 103, 77, 135, 103, 173, 135, 217, 173, 268, 217, 327, 268, 393, 327, 468, 393, 552, 468, 645, 552, 748, 645, 862, 748, 986, 862, 1122, 986, 1270, 1122, 1430, 1270, 1603, 1430, 1790, 1603, 1990, 1790
OFFSET
0,3
COMMENTS
The number of quadruples of integers [x, u, v, w] which satisfy x > u > v > w >=0, n+7 = x+u, u+v != x+w, and x+u+v+w is even.
FORMULA
G.f.: (1 + 2*x^2) / (1 - 2*x^2 - x^3 + 2*x^5 + 2*x^6 - x^8 - 2*x^9 + x^11).
0 = a(n) + a(n+1) - a(n+2) - 2*a(n+3) - 2*a(n+4) + 2*a(n+6) + 2*a(n+7) + a(n+8) - a(n+9) - a(n+10) + 3 for all n in Z.
a(n+3) - a(n) = 0 if n even else A006578((n+5)/2) for all n in Z.
a(n+2) = 2*A254594(n) + A254594(n+2) for all n in Z.
a(n) = -A254708(-9 - n) for all n in Z.
EXAMPLE
G.f. = 1 + 4*x^2 + x^3 + 8*x^4 + 4*x^5 + 15*x^6 + 8*x^7 + 25*x^8 + ...
MATHEMATICA
a[ n_] := Quotient[ n^3 + If[ OddQ[n], 8 n^2 + 9 n + 18, 17 n^2 + 84 n + 148], 96];
a[ n_] := Module[{m = n}, SeriesCoefficient[ If[ n < 0, m = -9 - n; -2 - x^2, 1 + 2 x^2] / ((1 - x^2)^2 (1 - x^3) (1 - x^4)), {x, 0, m}]];
a[ n_] := Length @ FindInstance[ {x > u, u > v, v > w, w >= 0, x + u == n + 7, u + v != x + w, x + u + v + w == 2 k}, {x, u, v, w, k}, Integers, 10^9];
PROG
(PARI) {a(n) = (n^3 + if( n%2, 8*n^2 + 9*n + 18, 17*n^2 + 84*n + 148)) \ 96};
(PARI) {a(n) = polcoeff( if( n<0, n = -9-n; -2 - x^2, 1 + 2*x^2) / ((1 - x^2)^2 * (1 - x^3) * (1 - x^4)) + x * O(x^n), n)};
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Feb 06 2015
STATUS
approved