login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254707
Expansion of (1 + 2*x^2) / ((1 - x^2)^2 * (1 - x^3) * (1 - x^4)) in powers of x.
3
1, 0, 4, 1, 8, 4, 15, 8, 25, 15, 38, 25, 55, 38, 77, 55, 103, 77, 135, 103, 173, 135, 217, 173, 268, 217, 327, 268, 393, 327, 468, 393, 552, 468, 645, 552, 748, 645, 862, 748, 986, 862, 1122, 986, 1270, 1122, 1430, 1270, 1603, 1430, 1790, 1603, 1990, 1790
OFFSET
0,3
COMMENTS
The number of quadruples of integers [x, u, v, w] which satisfy x > u > v > w >=0, n+7 = x+u, u+v != x+w, and x+u+v+w is even.
FORMULA
G.f.: (1 + 2*x^2) / (1 - 2*x^2 - x^3 + 2*x^5 + 2*x^6 - x^8 - 2*x^9 + x^11).
0 = a(n) + a(n+1) - a(n+2) - 2*a(n+3) - 2*a(n+4) + 2*a(n+6) + 2*a(n+7) + a(n+8) - a(n+9) - a(n+10) + 3 for all n in Z.
a(n+3) - a(n) = 0 if n even else A006578((n+5)/2) for all n in Z.
a(n+2) = 2*A254594(n) + A254594(n+2) for all n in Z.
a(n) = -A254708(-9 - n) for all n in Z.
EXAMPLE
G.f. = 1 + 4*x^2 + x^3 + 8*x^4 + 4*x^5 + 15*x^6 + 8*x^7 + 25*x^8 + ...
MATHEMATICA
a[ n_] := Quotient[ n^3 + If[ OddQ[n], 8 n^2 + 9 n + 18, 17 n^2 + 84 n + 148], 96];
a[ n_] := Module[{m = n}, SeriesCoefficient[ If[ n < 0, m = -9 - n; -2 - x^2, 1 + 2 x^2] / ((1 - x^2)^2 (1 - x^3) (1 - x^4)), {x, 0, m}]];
a[ n_] := Length @ FindInstance[ {x > u, u > v, v > w, w >= 0, x + u == n + 7, u + v != x + w, x + u + v + w == 2 k}, {x, u, v, w, k}, Integers, 10^9];
PROG
(PARI) {a(n) = (n^3 + if( n%2, 8*n^2 + 9*n + 18, 17*n^2 + 84*n + 148)) \ 96};
(PARI) {a(n) = polcoeff( if( n<0, n = -9-n; -2 - x^2, 1 + 2*x^2) / ((1 - x^2)^2 * (1 - x^3) * (1 - x^4)) + x * O(x^n), n)};
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Feb 06 2015
STATUS
approved