Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Oct 06 2018 03:56:25
%S 136,2178,58618,63804,2755907,0,144839908,304162700,4370652168,0,0,0,
%T 0,0,21914086555935085,187864919457180831,0,13397885590701080090,0,0,
%U 0,19095442247273220984552,1553298727699254868304830,1539325689516673750004702,242402817739393059296681797
%N Least n-th order digital invariant which is not an Armstrong number (A005188), or 0 if no such term exists.
%C An n-th order digital invariant is a number such that the sum of the n-th powers of the digits of n equals some number k and the sum of the n-th powers of the digits of k equals n. An Armstrong number is where n = k.
%D David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, London, England, 1997, pp. 124, 155.
%H Tim Johannes Ohrtmann, <a href="/A072897/b072897.txt">Table of n, a(n) for n = 3..45</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Invariant.html">Invariant.</a>
%t Do[k = 1; While[ !(Apply[Plus, IntegerDigits[Apply[Plus, IntegerDigits[k]^n]]^n] == k && Apply[Plus, IntegerDigits[k]^n] != k), k++ ]; Print[k], {n, 3, 7}]
%Y Cf. A005188, A072409.
%K hard,nonn,base
%O 3,1
%A _Robert G. Wilson v_, Aug 09 2002
%E a(8)-a(27) from _Tim Johannes Ohrtmann_, Aug 27 2015