login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072899
Denominator of c(n) where c(0)=1 c(n+1) = n/c(n) + 1.
1
1, 1, 1, 1, 2, 5, 13, 19, 58, 191, 655, 1187, 4462, 17519, 71063, 149405, 646846, 2887921, 13237457, 31166057, 150303170, 742458253, 3748521653, 9670072483, 50903810666, 273315477775, 1495006933759, 4163946939067, 23599037077934
OFFSET
0,5
COMMENTS
Dvornicich et al proved that c(n) is an integer only for n<4, so that a(n)=1 only for n<4. - Michel Marcus, Dec 24 2020
LINKS
Roberto Dvornicich, Francesco Veneziano, and Umberto Zannier, On the integral values of a curious recurrence, arXiv:1403.3470 [math.NT], 2014.
FORMULA
It seems that log(a(n)) is asymptotic to C*n*Log(n) with C=0.4....
MATHEMATICA
Denominator[RecurrenceTable[{c[1]==1, c[n]==(n-1)/c[n-1]+1}, c, {n, 30}]] (* Harvey P. Dale, Jun 11 2013 *)
PROG
(PARI) lista(nn) = {my(x = 1); for (n=0, nn, print1(denominator(x), ", "); x = 1+ n/x; ); } \\ Michel Marcus, Dec 24 2020
CROSSREFS
Cf. A072898.
Sequence in context: A068374 A068371 A327909 * A099982 A298991 A046696
KEYWORD
easy,frac,nonn
AUTHOR
Benoit Cloitre, Aug 10 2002
EXTENSIONS
a(0)=1 prepended by Michel Marcus, Dec 24 2020
STATUS
approved