Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Dec 24 2020 21:25:12
%S 1,1,1,1,2,5,13,19,58,191,655,1187,4462,17519,71063,149405,646846,
%T 2887921,13237457,31166057,150303170,742458253,3748521653,9670072483,
%U 50903810666,273315477775,1495006933759,4163946939067,23599037077934
%N Denominator of c(n) where c(0)=1 c(n+1) = n/c(n) + 1.
%C Dvornicich et al proved that c(n) is an integer only for n<4, so that a(n)=1 only for n<4. - _Michel Marcus_, Dec 24 2020
%H Roberto Dvornicich, Francesco Veneziano, and Umberto Zannier, <a href="http://arxiv.org/abs/1403.3470">On the integral values of a curious recurrence</a>, arXiv:1403.3470 [math.NT], 2014.
%H <a href="/index/O#Olympiads">Index to sequences related to Olympiads</a>.
%F It seems that log(a(n)) is asymptotic to C*n*Log(n) with C=0.4....
%t Denominator[RecurrenceTable[{c[1]==1,c[n]==(n-1)/c[n-1]+1},c,{n,30}]] (* _Harvey P. Dale_, Jun 11 2013 *)
%o (PARI) lista(nn) = {my(x = 1); for (n=0, nn, print1(denominator(x), ", "); x = 1+ n/x;);} \\ _Michel Marcus_, Dec 24 2020
%Y Cf. A072898.
%K easy,frac,nonn
%O 0,5
%A _Benoit Cloitre_, Aug 10 2002
%E a(0)=1 prepended by _Michel Marcus_, Dec 24 2020