The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A068374 Primes p such that positive values of p - A002110(k) are all primes for k > 0. 2
 2, 5, 13, 19, 43, 73, 103, 109, 229, 313, 883, 1093, 1489, 1699, 1789, 2143, 3463, 3853, 5653, 15649, 21523, 43789, 47743, 50053, 51199, 59473, 86293, 88819, 93493, 101533, 176053, 197299, 205663, 235009, 257503, 296509, 325543, 338413, 347989 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Robert Israel, Table of n, a(n) for n = 1..121 MAPLE primo:= proc(k) option remember; ithprime(k)*procname(k-1) end proc: primo(1):= 2: filter:= proc(p) local k; if not isprime(p) then return false fi; for k from 1 do if primo(k) >= p then return true elif not isprime(p - primo(k)) then return false fi od end proc: select(filter, [2, seq(i, i=3..10^6, 2)]); # Robert Israel, Dec 14 2015 MATHEMATICA s = Table[Product[Prime@ k, {k, n}], {n, 12}]; Select[Prime@ Range@ 30000, AllTrue[# - TakeWhile[s, Function[k, k < #]], PrimeQ@ # && # > 0 &] &] (* Michael De Vlieger, Dec 14 2015, Version 10 *) PROG (PARI) primo(n) = prod(k=1, n, prime(k)); isok(p) = {my(k=1); while ((pp=primo(k)) < p, if (! isprime(p-pp), return (0)); k++; ); return (1); } lista(nn) = forprime(p=2, nn, if (isok(p), print1(p, ", ")); ); \\ Michel Marcus, Dec 14 2015 (MATLAB) Primes = primes(10^8); A = Primes; primorial = 1; for k =1:10 primorial = primorial*Primes(k); j = find(A > primorial, 1, 'first'); if numel(j) == 0 break end A = [A(1:j-1), intersect(A(j:end), Primes + primorial)]; end A % Robert Israel, Dec 14 2015 CROSSREFS Cf. A002110. Sequence in context: A094158 A307244 A191082 * A068371 A327909 A072899 Adjacent sequences: A068371 A068372 A068373 * A068375 A068376 A068377 KEYWORD easy,nonn AUTHOR Naohiro Nomoto, Mar 01 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 05:42 EST 2023. Contains 367541 sequences. (Running on oeis4.)