login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A068374 Primes p such that positive values of p - A002110(k) are all primes for k > 0. 2
2, 5, 13, 19, 43, 73, 103, 109, 229, 313, 883, 1093, 1489, 1699, 1789, 2143, 3463, 3853, 5653, 15649, 21523, 43789, 47743, 50053, 51199, 59473, 86293, 88819, 93493, 101533, 176053, 197299, 205663, 235009, 257503, 296509, 325543, 338413, 347989 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
MAPLE
primo:= proc(k) option remember; ithprime(k)*procname(k-1) end proc:
primo(1):= 2:
filter:= proc(p)
local k;
if not isprime(p) then return false fi;
for k from 1 do
if primo(k) >= p then return true
elif not isprime(p - primo(k)) then return false
fi
od
end proc:
select(filter, [2, seq(i, i=3..10^6, 2)]); # Robert Israel, Dec 14 2015
MATHEMATICA
s = Table[Product[Prime@ k, {k, n}], {n, 12}]; Select[Prime@ Range@ 30000, AllTrue[# - TakeWhile[s, Function[k, k < #]], PrimeQ@ # && # > 0 &] &] (* Michael De Vlieger, Dec 14 2015, Version 10 *)
PROG
(PARI) primo(n) = prod(k=1, n, prime(k));
isok(p) = {my(k=1); while ((pp=primo(k)) < p, if (! isprime(p-pp), return (0)); k++; ); return (1); }
lista(nn) = forprime(p=2, nn, if (isok(p), print1(p, ", ")); ); \\ Michel Marcus, Dec 14 2015
(MATLAB)
Primes = primes(10^8);
A = Primes;
primorial = 1;
for k =1:10
primorial = primorial*Primes(k);
j = find(A > primorial, 1, 'first');
if numel(j) == 0
break
end
A = [A(1:j-1), intersect(A(j:end), Primes + primorial)];
end
A % Robert Israel, Dec 14 2015
CROSSREFS
Cf. A002110.
Sequence in context: A094158 A307244 A191082 * A068371 A327909 A072899
KEYWORD
easy,nonn
AUTHOR
Naohiro Nomoto, Mar 01 2002
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 05:42 EST 2023. Contains 367541 sequences. (Running on oeis4.)