OFFSET
1,1
COMMENTS
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 0, 5, 41, 407, 4125, 41215, 412331, 4123625, 41236308, ... . Apparently, the asymptotic density of this sequence exists and equals 0.041236... . - Amiram Eldar, Jan 18 2023
The asymptotic density of this sequence is Product_{p prime} (1 - 2/p^3) - 2 * Product_{p prime} (1 - 1/p^2 - 1/p^3) + Product_{p prime} (1 - 2/p^2) = 0.041236147082334172926... . - Amiram Eldar, Jan 05 2024
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
EXAMPLE
75 is a term since 75 = 3*5^2 and 76 = 2^2*19.
MATHEMATICA
With[{s = Select[Range[1350], And[MemberQ[#, 2], FreeQ[#, k_ /; k > 2]] &@ FactorInteger[#][[All, -1]] &]}, Function[t, Part[s, #] &@ Position[t, 1][[All, 1]]]@ Differences@ s] (* Michael De Vlieger, Jul 30 2017 *)
PROG
(Haskell)
a071318 n = a071318_list !! (n-1)
a071318_list = [x | x <- [1..], a212793 x == 1, a008966 x == 0,
let y = x+1, a212793 y == 1, a008966 y == 0]
-- Reinhard Zumkeller, May 27 2012
(PARI) isok(n) = (n>1) && (vecmax(factor(n)[, 2])==2) && (vecmax(factor(n+1)[, 2])==2); \\ Michel Marcus, Aug 02 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, May 29 2002
STATUS
approved