login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071319
First of 3 consecutive numbers which are cubefree and not squarefree, i.e., numbers k such that {k, k+1, k+2} are in A067259.
3
98, 475, 548, 603, 724, 844, 845, 1274, 1420, 1681, 1682, 1924, 2275, 2523, 2890, 3283, 3474, 3548, 3626, 3716, 4148, 4203, 4418, 4475, 4850, 4923, 4948, 5202, 5274, 5490, 5524, 5634, 5948, 6650, 6811, 6956, 7299, 7324, 7442, 7514, 7675, 8107, 8348
OFFSET
1,1
COMMENTS
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 0, 1, 7, 55, 570, 5628, 56174, 562151, 5621119, 56209006, ... . Apparently, the asymptotic density of this sequence exists and equals 0.00562... . - Amiram Eldar, Jan 18 2023
The asymptotic density of this sequence is Product_{p prime} (1 - 3/p^3) - 3 * Product_{p prime} (1 - 1/p^2 - 2/p^3) + 3 * Product_{p prime} (1 - 2/p^2 - 1/p^3) - Product_{p prime} (1 - 3/p^2) = 0.0056209097169531390208... . - Amiram Eldar, Jan 12 2024
LINKS
FORMULA
A051903(k) = A051903(k+1) = A051903(k+2) = 2 when k is a term.
EXAMPLE
98 is a term since 98 = 2*7^2, 99 = 3^2*11, and 100 = 2^2*5^2.
MATHEMATICA
With[{s = Select[Range[10^4], And[MemberQ[#, 2], FreeQ[#, k_ /; k > 2]] &@ FactorInteger[#][[All, -1]] &]}, Function[t, Part[s, #] &@ SequencePosition[t, {1, 1}][[All, 1]]]@ Differences@ s] (* Michael De Vlieger, Jul 30 2017 *)
PROG
(PARI) isok(n) = (n>1) && (vecmax(factor(n)[, 2])==2) && (vecmax(factor(n+1)[, 2])==2) && (vecmax(factor(n+2)[, 2])==2); \\ Michel Marcus, Aug 02 2017
CROSSREFS
Subsequence of A067259 and A071318.
Sequence in context: A306214 A160828 A158129 * A263040 A263033 A239173
KEYWORD
nonn
AUTHOR
Labos Elemer, May 29 2002
STATUS
approved