OFFSET
0,1
COMMENTS
Sums of 4 consecutive fourth powers.
Subsequence of A217844. - Michel Marcus, Jun 30 2013
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
G.f.: (18*x^4 - 72*x^3 + 188*x^2 - 136*x + 98)/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 14 2009
a(0)=98, a(1)=354, a(2)=978, a(3)=2258, a(4)=4578, a(n)=5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Mar 25 2012
E.g.f.: 2*(49 + 128*x + 92*x^2 + 24*x^3 + 2*x^4)*exp(x). - G. C. Greubel, Apr 30 2018
MAPLE
A000583 := proc(n) n^4 ; end: A160828 := proc(n) add(A000583(i), i=n..n+3) ; end: seq(A160828(n), n=0..40) ; # R. J. Mathar, May 29 2009
MATHEMATICA
Table[4n^4+24n^3+84n^2+144n+98, {n, 0, 40}] (* or *) LinearRecurrence[ {5, -10, 10, -5, 1}, {98, 354, 978, 2258, 4578}, 40] (* Harvey P. Dale, Mar 25 2012 *)
CoefficientList[Series[(18*x^4 -72*x^3 +188*x^2 -136*x +98)/(1-x)^5, {x, 0, 50}], x] (* G. C. Greubel, Apr 30 2018 *)
PROG
(Magma) [4*n^4+24*n^3+84*n^2+144*n+98: n in [0..40]]; // Vincenzo Librandi, Aug 27 2011
(Python)
A160828_list, m = [], [96, 0, 80, 80, 98]
for _ in range(10**2):
A160828_list.append(m[-1])
for i in range(4):
m[i+1] += m[i] # Chai Wah Wu, Jan 23 2016
(PARI) x='x+O('x^50); Vec((18*x^4 -72*x^3 +188*x^2 -136*x +98)/(1-x)^5) \\ G. C. Greubel, Apr 30 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), May 27 2009
EXTENSIONS
Edited and corrected by R. J. Mathar, May 29 2009
STATUS
approved