login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071143
Numbers n such that (i) the sum of the distinct primes dividing n is divisible by the largest prime dividing n and (ii) n has exactly 4 distinct prime factors and (iii) n is squarefree.
1
3135, 6279, 8855, 10695, 11571, 16095, 17255, 17391, 20615, 20735, 26691, 28083, 31031, 36519, 41151, 41615, 45695, 46655, 47859, 48495, 50439, 54131, 56823, 57239, 59295, 61295, 66215, 72611, 76055, 76479, 80135, 84135, 88595, 89999, 90951, 93651, 94611
OFFSET
1,1
LINKS
FORMULA
A008472(n)/A006530(n) is integer; A001221(n) = 4, n is squarefree.
EXAMPLE
n = pqrs, p<q<r<s, p+q+r+s = ks; n = 6279 = 3*7*13*23, sum = 3+7+13+23 = 2*23
MATHEMATICA
ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] sb[x_] := Apply[Plus, ba[x]] ma[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] amo[x_] := Abs[MoebiusMu[x]] Do[s=sb[n]/ma[n]; If[IntegerQ[s]&&Equal[lf[n], 4]&& !Equal[amo[n], 0], Print[{n, ba[n]}]], {n, 2, 1000000}]
s = {}; Do[Length[f=FactorInteger@n] == 4 && Max[(t = Transpose@f)[[2]]] == 1 && Mod[Plus @@ t[[1]], t[[1, -1]]] == 0 && AppendTo[s, n], {n, 3, 10^6, 2}]; s (* 12 times faster, Giovanni Resta, Apr 10 2013 *)
sdpQ[n_]:=Module[{fi=FactorInteger[n][[All, 1]]}, Divisible[Total[fi], Last[ fi]] &&Length[fi]==4&&SquareFreeQ[n]]; Select[Range[100000], sdpQ] (* Harvey P. Dale, May 01 2018 *)
KEYWORD
nonn
AUTHOR
Labos Elemer, May 13 2002
EXTENSIONS
Definition clarified by Harvey P. Dale, May 01 2018
STATUS
approved