OFFSET
1,1
COMMENTS
a(n) are the numbers such that the difference between the largest and the smallest prime divisor equals the sum of the other distinct prime divisors. - Michel Lagneau, Nov 13 2011
The statement above is only true for 966 of the first 1000 terms. The first counterexample is a(140) = 15015. - Donovan Johnson, Apr 10 2013
Lagneau's definition can be simplified to the largest prime divisor equals the sum of the other distinct prime divisors. - Christian N. K. Anderson, Apr 15 2013
LINKS
Donovan Johnson, Table of n, a(n) for n = 1..1000
FORMULA
EXAMPLE
n = 70 = 2*5*7 has a form of 2pq, where p and q are twin primes; n = 3135 = 3*5*11*19, sum = 3+5+11+19 = 38 = 2*19, divisible by 19.
MATHEMATICA
ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] sb[x_] := Apply[Plus, ba[x]] ma[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] Do[s=sb[n]/ma[n]; If[IntegerQ[s]&&Greater[s, 1], Print[{n, ba[n]}]], {n, 2, 1000000}]
(* Second program: *)
Select[Range@ 2250, And[Length@ # > 1, Divisible[Total@ #, Last@ #]] &[FactorInteger[#][[All, 1]] ] &] (* Michael De Vlieger, Jul 18 2017 *)
PROG
(Haskell)
a071140 n = a071140_list !! (n-1)
a071140_list = filter (\x -> a008472 x `mod` a006530 x == 0) a024619_list
-- Reinhard Zumkeller, Apr 18 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, May 13 2002
STATUS
approved