login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071145
Numbers n such that sum of distinct primes dividing n is divisible by the largest prime dividing n. Also n has exactly 6 distinct prime factors and n is squarefree.
1
72930, 106590, 190190, 222870, 335478, 397670, 620310, 836418, 844305, 884442, 1008678, 1195670, 1218945, 1247290, 1704794, 1761110, 1799798, 2086238, 2206022, 2328410, 2485830, 2496585, 2517258, 2863718, 2903538, 3024021, 3157665, 3172785, 3291890
OFFSET
1,1
LINKS
FORMULA
A008472(n)/A006530(n) is integer; A001221(n) = 6, n is squarefree.
EXAMPLE
n = pqrstw, p<q<r<s<t<w, primes, p+q+r+s+t+w = kt; n = 106590 = 2*3*5*11*17*19; sum = 2+3+5+11+17+19 = 57 = 3*19 (quotient=3) (Corrected Mar 06 2006.)
MATHEMATICA
ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] sb[x_] := Apply[Plus, ba[x]] ma[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] amo[x_] := Abs[MoebiusMu[x]] Do[s=sb[n]/ma[n]; If[IntegerQ[s]&&Equal[lf[n], 6]&& !Equal[amo[n], 0], Print[{n, ba[n]}]], {n, 2, 1000000}]
KEYWORD
nonn
AUTHOR
Labos Elemer, May 13 2002
STATUS
approved