login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067360
a(n) = 17^n sin(2n arctan(1/4)) or numerator of tan(2n arctan(1/4)).
4
8, 240, 4888, 77280, 905768, 4839120, -116593352, -4896306240, -113193708472, -1980778750800, -26710380775592, -228866364286560, 853309115549288, 91741652745294480, 2505643247965090168, 48655959795562600320, 735547895204966951048
OFFSET
1,1
COMMENTS
Note that A067360(n), A067361(n) and 17^n are primitive Pythagorean triples with hypotenuse 17^n.
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 430-433.
LINKS
J. M. Borwein and R. Girgensohn, Addition theorems and binary expansions, Canadian J. Math. 47 (1995) 262-273.
E. Eckert, The group of primitive Pythagorean triangles, Mathematics Magazine 57 (1984) 22-27.
Steven R. Finch, Plouffe's Constant [Broken link]
Steven R. Finch, Plouffe's Constant [From the Wayback machine]
Simon Plouffe, The Computation of Certain Numbers Using a Ruler and Compass, J. Integer Seqs. Vol. 1 (1998), #98.1.3.
FORMULA
a(n) = 17^n sin(2n arctan(1/4)). A recursive formula for T(n) = tan(2n arctan(1/4)) is T(n+1)=(8/15+T(n))/(1-8/15*T(n)). Unsigned a(n) is the absolute value of numerator of T(n).
Conjectures from Colin Barker, Jul 25 2017: (Start)
G.f.: 8*x / (1 - 30*x + 289*x^2).
a(n) = i*((15 - 8*i)^n - (15 + 8*i)^n)/2 where i=sqrt(-1).
a(n) = 30*a(n-1) - 289*a(n-2) for n>2.
(End)
MAPLE
a[1] := 8/15; for n from 1 to 40 do a[n+1] := (8/15+a[n])/(1-8/15*a[n]):od: seq(abs(numer(a[n])), n=1..40); # a[n]=tan(2n arctan(1/4))
MATHEMATICA
Table[Tan[2n ArcTan[1/4]] // TrigToExp // Simplify // Numerator, {n, 1, 17} ] (* Jean-François Alcover, Jul 25 2017 *)
CROSSREFS
Cf. A067361 (17^n cos(2n arctan(1/4))).
Sequence in context: A254927 A221466 A334712 * A221770 A007060 A319851
KEYWORD
sign,easy,frac
AUTHOR
Barbara Haas Margolius (b.margolius(AT)csuohio.edu), Jan 17 2002
STATUS
approved