login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319851
Welschinger invariant for the number of real plane curves of degree n passing through 3*n-1 general points.
2
1, 1, 8, 240, 18264, 2845440, 792731520, 359935488000, 248962406889600
OFFSET
1,3
COMMENTS
a(n) is the Welschinger invariant #n.
LINKS
Aubin Arroyo, Erwan Brugallé and Lucía López de Medrano, Recursive formulas for Welschinger invariants of the projective plane, International Mathematics Research Notices, 2011, 1107-1134; arXiv:0809.1541 [math.AG], 2008-2010. See numbers W2(n,0) in Section 7.3.
Erwan Brugallé, Géométries énumératives complexe, réelle et tropicale, Journées mathématiques X-UPS, École polytechnique, 2008. See Table 3, p. 54.
Antoine Chambert-Loir, Quand la géométrie devient tropicale, Pour la Science, No 492, October 2018 (in French).
I. Itenberg, V. Kharlamov & E. Shustin, Welschinger invariant and enumeration of real rational curves, Int. Math. Res. Not. (2003), no. 49, pp. 2639-2653.
I. Itenberg, V. Kharlamov & E. Shustin, Welschinger invariant and enumeration of real rational curves, arXiv:math/0303378 [math.AG], 2003.
I. Itenberg, V. Kharlamov & E. Shustin, Logarithmic equivalence of the Welschinger and the Gromov-Witten invariants, Uspekhi Mat. Nauk 59 (2004), no. 6(360), pp. 85-110.
I. Itenberg, V. Kharlamov & E. Shustin, Logarithmic equivalence of the Welschinger and the Gromov-Witten invariants, arXiv:math/0407188 [math.AG], 2004.
CROSSREFS
Sequence in context: A067360 A221770 A007060 * A320605 A302005 A301778
KEYWORD
nonn,more
AUTHOR
Georges Perrotte, Sep 29 2018
EXTENSIONS
a(8)-a(9) added from Arroyo et al. and name clarified by Andrey Zabolotskiy, May 03 2022, based on contribution by Michel Marcus
STATUS
approved