login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066770
a(n) = 5^n*sin(2n*arctan(1/2)) or numerator of tan(2n*arctan(1/2)).
8
4, 24, 44, -336, -3116, -10296, 16124, 354144, 1721764, 1476984, -34182196, -242017776, -597551756, 2465133864, 29729597084, 116749235904, -42744511676, -3175197967656, -17982575014036, -28515500892816, 278471369994004, 2383715742284424, 7340510203856444
OFFSET
1,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 430-433.
LINKS
J. M. Borwein and R. Girgensohn, Addition theorems and binary expansions, Canadian J. Math. 47 (1995) 262-273.
E. Eckert, The group of primitive Pythagorean triangles, Mathematics Magazine 57 (1984) 22-27.
Steven R. Finch, Plouffe's Constant [Broken link]
Steven R. Finch, Plouffe's Constant [From the Wayback machine]
Simon Plouffe, The Computation of Certain Numbers Using a Ruler and Compass, J. Integer Seqs. Vol. 1 (1998), #98.1.3.
FORMULA
G.f.: 4*x/(1-6*x+25*x^2). - Ralf Stephan, Jun 12 2003
a(n) = 5^n*sin(2*n*arctan(1/2)). A recursive formula for T(n) = tan(2*n*arctan(1/2)) is T(n+1) = (4/3+T(n))/(1-4/3*T(n)). Unsigned a(n) is the absolute value of numerator of T(n).
a(n) is the imaginary part of (2+I)^(2*n) = Sum_{k=0..n} 2^(2*n-2*k-1)*(-1)^k*binomial(2*n, 2*k+1). - Benoit Cloitre, Aug 03 2002
a(n) = 6*a(n-1)-25*a(n-2), n>2. - Gary Detlefs, Dec 11 2010
a(n) = 5^n*sin(n*x), where x = arcsin(4/5) = 0.927295218.. . - Gary Detlefs, Dec 11 2010
MAPLE
a[1] := 4/3; for n from 1 to 40 do a[n+1] := (4/3+a[n])/(1-4/3*a[n]):od: seq(abs(numer(a[n])), n=1..40); # a[n]=tan(2n arctan(1/2))
MATHEMATICA
Table[ 5^n*Sin[2*n*ArcCot[2]] // Simplify, {n, 1, 23}] (* Jean-François Alcover, Mar 04 2013 *)
PROG
(PARI) a(n)=imag((2+I)^(2*n))
CROSSREFS
Cf. A066771, A000351 powers of 5 and also hypotenuse of right triangle with legs given by A066770 and A066771.
Note that A066770, A066771 and A000351 are primitive Pythagorean triples with hypotenuse 5^n. The offset of A000351 is zero, but the offset is 1 for A066770, A066771.
Sequence in context: A174178 A139245 A224242 * A080380 A364278 A039935
KEYWORD
sign,easy,frac
AUTHOR
Barbara Haas Margolius, (b.margolius(AT)csuohio.edu), Jan 17 2002
STATUS
approved