login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067357
Number of self-conjugate partitions of 4n+1 into odd parts.
2
1, 1, 2, 2, 2, 3, 4, 4, 5, 6, 6, 8, 10, 10, 12, 14, 15, 18, 20, 22, 26, 29, 32, 36, 40, 44, 50, 56, 60, 68, 76, 82, 92, 101, 110, 122, 134, 146, 160, 176, 191, 210, 230, 248, 272, 296, 320, 350, 380, 410, 446, 484, 522, 566, 612, 660, 715, 772, 830, 896, 966, 1038, 1120
OFFSET
0,3
COMMENTS
Also number of partitions of n in which even parts are distinct and if k occurs then so does every positive even number less than k (Dean Hickerson). Absolute values of the terms of A053254. - Emeric Deutsch, Feb 10 2006
The number of self-conjuage partitions of n into odd parts is nonzero if and only if n = 4*k + 1 for some nonnegative integer k. - Michael Somos, Jul 25 2015
REFERENCES
P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p. 260, Article 512.
LINKS
George E. Andrews, The Bhargava-Adiga Summation and Partitions, Journal of the Indian Mathematical Society, Volume 84, Issue 3-4, 2017.
George E. Andrews, Integer partitions with even parts below odd parts and the mock theta functions, to appear in Annals of Combinatorics, 2017.
FORMULA
G.f.: Sum_{k>=0} q^(k*(k+1)) / ((1-q) * (1-q^3) ... (1-q^(2*k+1)). - Emeric Deutsch and Dean Hickerson
G.f.: Sum_{k>=0} q^k * (1+q) * (1+q^3) ... (1+q^(2*k-1)). - Dean Hickerson and Vladeta Jovovic
G.f.: 1/(1 - x*(1+x)/(1 + x^2*(1-x^2)/(1 - x^3*(1+x^3)/(1 + x^4*(1-x^4)/(1 - x^5*(1+x^5)/(1 - ...)))))), a continued fraction. - Paul D. Hanna, Jul 09 2013
From Michael Somos, Jul 25 2015: (Start)
Expansion of nu(-x) in powers of x where nu() is a 3rd-order mock theta function.
a(n) = (-1)^n * A053254(n).
a(2*n) = A085140(n).
a(2*n + 1) = A053253(n). (End)
a(n) ~ exp(Pi*sqrt(n/6)) / (2^(3/2)*sqrt(n)). - Vaclav Kotesovec, Jun 15 2019
EXAMPLE
a(5)=3 because we have [11,1,1,1,1,1,1,1,1,1,1], [9,3,3,1,1,1,1,1,1] and [5,5,5,3,3].
G.f. = 1 + x + 2*x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 4*x^7 + 5*x^8 + ...
MAPLE
g:=sum(q^(k*(k+1))/product(1-q^(2*j+1), j=0..k), k=0..8): gser:=series(g, q=0, 80): seq(coeff(gser, q, n), n=0..75); # Emeric Deutsch, Feb 10 2006
MATHEMATICA
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^(k^2 + k) / Product[ 1 - x^i, {i, 1, 2 k + 1, 2}], {k, 0, (Sqrt[ 4 n + 1] - 1) / 2}], {x, 0, n}]]; (* Michael Somos, Jul 25 2015 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint( 4*n+1) -1) \ 2, x^(k^2 + k) / prod(j=0, k, 1 - x^(2*j+1), 1 + x * O(x^(n - k^2 - k)))), n))}; /* Michael Somos, Jan 27 2008 */
(PARI) /* Continued Fraction Expansion: */
{a(n)=local(CF); CF=1+x; for(k=0, n, CF=1/(1 + (-x)^(n-k+1)*(1 - (-x)^(n-k+1))*CF+x*O(x^n))); polcoeff(CF, n)} \\ Paul D. Hanna, Jul 09 2013
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Naohiro Nomoto, Feb 24 2002
EXTENSIONS
More terms from Emeric Deutsch, Feb 10 2006
STATUS
approved