login
A066884
Square array read by upward antidiagonals where the n-th row contains the positive integers with n binary 1's.
8
1, 3, 2, 7, 5, 4, 15, 11, 6, 8, 31, 23, 13, 9, 16, 63, 47, 27, 14, 10, 32, 127, 95, 55, 29, 19, 12, 64, 255, 191, 111, 59, 30, 21, 17, 128, 511, 383, 223, 119, 61, 39, 22, 18, 256, 1023, 767, 447, 239, 123, 62, 43, 25, 20, 512, 2047, 1535, 895, 479, 247, 125, 79, 45, 26, 24, 1024
OFFSET
1,2
COMMENTS
This is a permutation of the positive integers; the inverse permutation is A067587.
LINKS
Ivan Neretin, Table of n, a(n) for n = 1..8001 (126 antidiagonals)
Vladimir Dobric, M. Skyers, and L. J. Stanley, Polynomial Time Computable Triangular Arrays For Almost Sure Convergence, arXiv preprint arXiv:1603.04896 [math.PR], 2016. [Shows that this sequence is in P-TIME]
EXAMPLE
Column: 1 2 3 4 5 6
-----------------------------
Row 1:| 1 2 4 8 16 32
Row 2:| 3 5 6 9 10 12
Row 3:| 7 11 13 14 19 21
Row 4:|15 23 27 29 30 39
Row 5:|31 47 55 59 61 62
Row 6:|63 95 111 119 123 125
MATHEMATICA
a = {}; Do[ a = Append[a, Last[ Take[ Take[ Select[ Range[2^12], Count[ IntegerDigits[ #, 2], 1] == j - i + 1 & ], j], i]]], {j, 1, 11}, {i, 1, j}]; a
CROSSREFS
Selected rows: A000079 (1), A018900 (2), A014311 (3), A014312 (4), A014313 (5), A023688 (6), A023689 (7), A023690 (8), A023691 (9), A038461 (10), A038462 (11), A038463 (12). For decimal analogs, see A011557 and A038444-A038452.
Selected columns: A000225 (1), A055010 (2).
Selected diagonals: A036563 (main), A000918 (1st upper), A153894 (2nd upper). [Franklin T. Adams-Watters, Apr 22 2009]
Cf. A067576 (the same array read by downward antidiagonals).
Antidiagonal sums give A361074.
Sequence in context: A283940 A163255 A297932 * A171429 A191448 A191447
KEYWORD
nonn,tabl,base
AUTHOR
Jared Benjamin Ricks (jaredricks(AT)yahoo.com), Jan 21 2002
EXTENSIONS
Corrected and extended by Henry Bottomley, Jan 27 2002
STATUS
approved