login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A066883 Number of primes in the interval [p(n), p(n)^2] minus p(n), where p(n) is the n-th prime. 3
0, 0, 2, 5, 15, 21, 38, 46, 68, 108, 121, 171, 210, 227, 268, 341, 412, 441, 524, 585, 612, 711, 781, 888, 1042, 1126, 1165, 1247, 1286, 1381, 1720, 1814, 1972, 2018, 2306, 2361, 2536, 2715, 2838, 3029, 3217, 3290, 3635, 3709, 3848, 3920, 4370, 4836 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Haga's conjecture (see link below) is that if the integers from 1 to p^2 (p prime) are put in a p by p square in standard order, then there's a transversal consisting of primes; i.e., a set of p primes containing exactly one number in each row and column. E.g., for p=5 the primes 5, 7, 11, 19, 23 work. Since p is needed for the p-th column, primes less than p can't be used. a(n) is the number of primes available minus the number needed for the transversal.

REFERENCES

Paulo Ribenboim, The New Book of Prime Number Records, 3rd ed., 1995, Springer, pp. 397-398

LINKS

Harry J. Smith, Table of n, a(n) for n = 1..1000

Carlos Rivera, The prime puzzles & problems connection, conjecture 26

FORMULA

a(n) = A054272(n)-A000040(n).

MATHEMATICA

a[n_] := PrimePi[(p=Prime[n])^2]-PrimePi[p-1]-p

PROG

(BASIC) 20 for Y=1 to 140 30 A=nxtprm(A):B=A^2 40 for X=A to B 50 if X=prmdiv(X) then C=C+1 60 next X 70 print A; C; C-A; "-"; 80 C=0 90 next Y

(PARI) { for (n=1, 1000, a=primepi((p=prime(n))^2) - primepi(p - 1) - p; write("b066883.txt", n, " ", a) ) } \\ Harry J. Smith, Apr 04 2010

CROSSREFS

Cf. A066885, A066886, A054272.

Sequence in context: A146122 A263457 A146121 * A146120 A104585 A146119

Adjacent sequences:  A066880 A066881 A066882 * A066884 A066885 A066886

KEYWORD

easy,nonn

AUTHOR

Enoch Haga, Jan 26 2002

EXTENSIONS

Edited by Dean Hickerson, Jun 08 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 00:42 EDT 2020. Contains 337276 sequences. (Running on oeis4.)