login
A066886
Sum of the elements in any transversal of a prime(n) X prime(n) array containing the numbers from 1 to prime(n)^2 in standard order.
4
5, 15, 65, 175, 671, 1105, 2465, 3439, 6095, 12209, 14911, 25345, 34481, 39775, 51935, 74465, 102719, 113521, 150415, 178991, 194545, 246559, 285935, 352529, 456385, 515201, 546415, 612575, 647569, 721505, 1024255, 1124111, 1285745
OFFSET
1,1
COMMENTS
a(n) is the sum of the primes in a prime(n) X prime(n) example of Haga's conjecture (see link below).
LINKS
Carlos Rivera, The prime puzzles & problems connection, conjecture 26, The Prime Puzzles and Problems Connection.
FORMULA
a(n) = prime(n)*(prime(n)^2+1)/2, where prime(n) is the n-th prime.
a(n) = A006003(prime(n)). - Michel Marcus, Apr 04 2018
a(n) = A006254(n-1)^4 - A005097(n-1)^4, for n>1. - Dimitris Valianatos, Apr 10 2018
MAPLE
map(t -> t*(t^2+1)/2, [seq(ithprime(i), i=1..100)]); # Robert Israel, Apr 04 2018
MATHEMATICA
a[n_] := Prime[n] (Prime[n]^2 + 1)/2; Table[a[n], {n, 50}]
PROG
(PARI) apply(x->(x*(x^2+1)/2), primes(100)) \\ Michel Marcus, Apr 04 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Enoch Haga, Jan 22 2002
EXTENSIONS
Edited by Dean Hickerson, Jun 08 2002
STATUS
approved