login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361074
Sum of the j-th number with binary weight n-j+1 over all j in [n].
3
0, 1, 5, 16, 40, 92, 193, 401, 812, 1632, 3261, 6526, 13030, 26049, 52013, 103974, 207797, 415496, 830636, 1661086, 3321498, 6642591, 13283920, 26567121, 53131653, 106261922, 212518857, 425034976, 850060303, 1700115399, 3400211408, 6800412866, 13600787296
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{j=1..n} A066884(j,n-j+1) = Sum_{j=1..n} A067576(j,n-j+1).
Conjecture: a(n) ~ 19 * 2^n / 6. - Vaclav Kotesovec, Mar 04 2023
EXAMPLE
a(0) = 0 (empty sum).
a(1) = 1 = 1_2.
a(2) = 5 = 2 + 3 = 10_2 + 11_2.
a(3) = 16 = 4 + 5 + 7 = 100_2 + 101_2 + 111_2.
a(4) = 40 = 8 + 6 + 11 + 15 = 1000_2 + 110_2 + 1011_2 + 1111_2.
MAPLE
b:= proc(i, j) option remember; uses Bits: local c, l, k;
if j=1 then 2^i-1
else c, l:= 0, [Split(b(i, j-1))[], 0];
for k while l[k]<>1 or l[k+1]<>0 do c:=c+l[k] od;
Join([1$c, 0$k-c, 1, l[k+2..-1][]])
fi
end:
a:= n-> add(b(j, n-j+1), j=1..n):
seq(a(n), n=0..32);
CROSSREFS
Antidiagonal sums of A066884 or of A067576.
Sequence in context: A006007 A001753 A202087 * A309403 A073459 A299048
KEYWORD
nonn,base
AUTHOR
Alois P. Heinz, Mar 01 2023
STATUS
approved