login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361071
Let c1(p) be the number of primes <= p with an odd number of 1's in base 2, and let c2(p) be the number of primes <= p with an even number of 1's in base 2. a(n) is the least prime p such that abs(c1(p) - c2(p)) >= n.
0
2, 13, 41, 61, 67, 79, 109, 131, 137, 173, 179, 181, 191, 193, 211, 223, 227, 229, 233, 239, 241, 251, 587, 613, 617, 641, 653, 659, 661, 719, 727, 733, 761, 769, 829, 953, 967, 971, 1009, 1021, 1039, 1069, 1087, 1193, 1201, 1213, 1697, 1721, 1753, 1759, 1777, 1783, 1787
OFFSET
1,1
EXAMPLE
a(1) = 2, because c1(2) = 1 and c2(2) = 0, so abs(c1(2) - c2(2)) = 1 >= 1, and no lesser prime satisfies this.
PROG
(PARI) { r = 0; n = 1; forprime (p = 2, 1787, r += (-1)^hammingweight(p); if (n==abs(r), print1 (p", "); n++; ); ); } \\ Rémy Sigrist, Mar 01 2023
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Jean-Marc Rebert, Mar 01 2023
STATUS
approved