login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157185 a(n) = least prime p such that there are n consecutive even numbers E < 2 sqrt(p) such that E^2-p is prime. 0
2, 13, 41, 83, 83, 167, 227, 227, 2273, 2273, 2273, 5297, 340007, 837077, 837077, 837077, 837077, 837077, 2004917, 2004917, 2004917, 208305767, 208305767 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Inspired by a puzzle proposed by J. M. Bergot, cf. link.

The limit of 2*sqrt(p) imposed here is somewhat arbitrary, but this seemed the most natural choice. (Note that the E's must be > sqrt(p).) Changing it to 3*sqrt(p) would "reveal" the numbers 5,17 and the fact that p=227 is "good" up to n=13. Beyond a(14) both of these limits yield the same terms.

a(24) > 3*10^9. - Donovan Johnson, Nov 29 2010

LINKS

Table of n, a(n) for n=1..23.

J. M. Bergot, Puzzle #481: E.E-p=q, in C. Rivera's Prime puzzles, Feb. 2009.

EXAMPLE

The following table gives n (length of the run), a(n) (the prime), and the largest of the n consecutive even numbers E[1],...,E[n] such that E[i]^2-p is prime:

[1, 2, 2] since 2^2-2 = 2 is prime

[2, 13, 6] since 4^2-5 = 11 and 6^2-5 = 31 are prime

[3, 41, 12]

[4, 83, 16] is a truncation of the following chain:

[5, 83, 18] since {10,12,14,16,18} squared minus 83 are all prime

[6, 167, 24] since 20^2-83 which is prime is ignored because 20 > 2sqrt(83)

[7, 227, 28]

[8, 227, 30]

[9, 2237, 64] since E=32,34,36,38,40 are > 2sqrt(227),

[10, 2273, 66] although they would also yield primes E^2-p for p=227.

[11, 2273, 68]

[12, 5297, 96]

[13, 340007, 690]

[14, 837077, 942]

[15, 837077, 944]

[16, 837077, 946]

[17, 837077, 948]

[18, 837077, 950]

[19, 2004917, 2572]

[20, 2004917, 2574]

[21, 2004917, 2576]

PROG

(PARI) list_A157185( m=0, p=0, C=2, L=0 )={ until( L=0, forstep( j=(t=sqrt(p=nextprime(p+2)))\2*2+2, C*t\1, 2, if(isprime(j^2-p), L++>m & print([m=L, p, j]), L&L=0)))}

CROSSREFS

Sequence in context: A042795 A179925 A263980 * A219054 A154354 A138089

Adjacent sequences: A157182 A157183 A157184 * A157186 A157187 A157188

KEYWORD

more,nonn

AUTHOR

M. F. Hasler, Mar 02 2009

EXTENSIONS

a(22)-a(23) from Donovan Johnson, Nov 29 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 22 09:08 EDT 2023. Contains 361423 sequences. (Running on oeis4.)