login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157182
Square array such that horizontal and vertical neighbors add to a prime, read by antidiagonals, filled the greedy way using positive integers, not more than once each.
1
1, 2, 4, 3, 9, 7, 8, 10, 22, 6, 5, 21, 19, 25, 11, 12, 26, 40, 18, 36, 20, 17, 35, 27, 13, 23, 47, 33, 14, 24, 32, 16, 30, 50, 56, 28, 15, 29, 65, 51, 31, 53, 57, 45, 39, 38, 44, 42, 62, 52, 48, 74, 82, 34, 58, 41, 59, 95, 89, 75, 49, 83, 99, 55, 69, 43, 60, 68, 54, 78, 92, 64
OFFSET
1,2
COMMENTS
Following ideas from Leroy Quet, D. Wilson and F. Adams-Watters, cf. link.
Can we conjecture that this is a permutation of the positive integers?
LINKS
D. Wilson and F. Adams-Watters in reply to Leroy Quet, Prime Sums In A Grid, SeqFan list, Feb 24 2009
EXAMPLE
The antidiagonals of the array form the following triangle, where each number must add up to a prime with its neighbors above:
____________________________ 1,
__________________________ 2 , 4,
________________________ 3 , 9 , 7,
______________________ 8, 10 , 22 , 6,
____________________ 5, 21 , 19 , 25 , 11,
_________________ 12, 26 , 40 , 18 , 36 , 20,
_______________ 17, 35 , 27 , 13 , 23 , 47 , 33,
_____________ 14, 24 , 32 , 16 , 30 , 50 , 56 , 28,
___________ 15, 29 , 65 , 51 , 31 , 53 , 57 , 45 , 39,
_________ 38, 44 , 42 , 62 , 52 , 48 , 74 , 82 , 34 , 58,
_______ 41, 59 , 95 , 89 , 75 , 49 , 83 , 99 , 55 , 69 , 43,
_____ 60, 68 , 54 , 78 , 92 , 64 , 90, 80 , 94 , 112, 70 , 46,
___ 37, 71 , 113, 73, 101 , 87 , 67, 77, 117 , 79 , 61 , 81 , 63,
_ 66, 102, 86 , 84, 126, 110, 106, 72, 116, 154 , 88 , 76, 100, 104,
85, 91, 125, 107, 97, 131, 123, 121, 155, 153, 103, 105, 151, 93, 119
PROG
(PARI) A157182( n, show=0/*set to 1 to print everything instead*/, last_diag=[1], min_not_used=2, others_used=[])={ local(new_diag); n-- || return(1); for( d=1+#last_diag, 1+sqrtint(2*n), /* fill the d-th antidiagonal */ show & print(last_diag, ", "); new_diag=vector( d ); for( j=1, d, ! new_diag[ j ] && new_diag[ j ] = min_not_used + (d-min_not_used)%2; while( setsearch( others_used, new_diag[j] ) || ( j > 1 && setsearch( Set( vecextract( new_diag, 2^(j-1)-1)), new_diag[j] )) || ( j < d && ! isprime( last_diag[ j ] + new_diag[ j ] )) || ( j > 1 && ! isprime( last_diag[ j-1 ] + new_diag[ j ] )), new_diag[j] += 2; ); show || n-- || return(new_diag[j]) ); others_used = setunion( others_used, new_diag ); while( setsearch( others_used, min_not_used ), others_used = setminus( others_used, Set( min_not_used )); min_not_used++; ); last_diag=new_diag; /* a=concat(a, new_diag ); */ ); [ min_not_used, others_used ]; }
CROSSREFS
This is the 2D analog of A055265. [From Franklin T. Adams-Watters, Mar 07 2009]
Sequence in context: A356222 A329901 A284572 * A343232 A292145 A297552
KEYWORD
nonn,tabl,changed
AUTHOR
M. F. Hasler, Feb 24 2009
STATUS
approved