|
|
A065897
|
|
The a(n)-th composite number is twice the n-th prime.
|
|
3
|
|
|
1, 2, 5, 7, 13, 16, 22, 25, 31, 41, 43, 52, 59, 62, 69, 78, 87, 91, 101, 107, 111, 120, 127, 137, 149, 155, 159, 166, 170, 177, 199, 206, 215, 218, 235, 239, 248, 259, 266, 277, 286, 289, 306, 309, 316, 319, 339, 359, 366, 369, 375, 386, 389, 406, 416, 426, 438
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 2*prime(n) - (pi(2*prime(n))) - 1, where pi = A000720.
|
|
EXAMPLE
|
a(7) = 22 because twice the 7th prime (2*17 = 34) is the 22nd composite number: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34.
|
|
MAPLE
|
|
|
MATHEMATICA
|
Table[2*Prime[n]-(PrimePi[2*Prime[n]])-1, {n, 128}]
|
|
PROG
|
(PARI) { for (n=1, 1000, f=2*prime(n); a=f - primepi(f) - 1; write("b065897.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 04 2009
(Magma)
A065897:= func< n | 2*NthPrime(n) -1 -#PrimesUpTo(2*NthPrime(n)) >;
(SageMath)
def A065897(n): return 2*nth_prime(n) -prime_pi(2*nth_prime(n)) -1
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,changed
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|