login
A186131
Positions of the odd partitions of (2k) in reverse lexicographic order converge to this limiting sequence.
4
2, 5, 7, 13, 16, 19, 31, 34, 38, 41, 45, 68, 71, 76, 79, 86, 88, 92, 97, 140, 143, 148, 151, 159, 162, 164, 168, 181, 184, 189, 195, 273, 276, 281, 284, 293, 296, 298, 302, 317, 319, 326, 329, 334, 353, 356, 360, 366, 373, 509, 512, 517, 520, 529, 532, 534, 538, 554, 557, 559, 566, 569, 574, 601
OFFSET
1,1
LINKS
EXAMPLE
The odd partitions of (2*4) occur at positions 2, 5, 7, 14, 17 and 22. For (2*5) they occur at 2, 5, 7, 13, ... so for k=5 only the first three terms have stabilized, giving a(1) = 2, a(2) = 5, and a(3) = 7.
MATHEMATICA
<<DiscreteMath`Combinatorica`;
it=Table[Flatten[Position[Partitions[n], q_List/; FreeQ[q, _?EvenQ], 1]], {n, 36, 36+2, 2}]; {{diffat}}=Position[Take[Last[it], Length[First[it] ] ] - First[it] , a_ /; (a!=0), 1, 1]; Take[First[it], diffat -1 ]
CROSSREFS
First differences give A186204.
Sequence in context: A266001 A062879 A272193 * A284191 A065897 A293762
KEYWORD
nonn
AUTHOR
Wouter Meeussen, Feb 13 2011
STATUS
approved