|
|
A272193
|
|
Numbers k such that (73*10^k + 143)/9 is prime.
|
|
0
|
|
|
1, 2, 5, 7, 13, 16, 17, 25, 44, 52, 197, 233, 241, 389, 838, 856, 2252, 2945, 5207, 8020, 10708, 14663, 16885, 20366, 20450, 24121, 24437, 29348, 134939
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
For k > 1, numbers k such that the digit 8 followed by k-2 occurrences of the digit 1 followed by the digits 27 is prime (see Example section).
a(29) > 2*10^5.
|
|
LINKS
|
|
|
EXAMPLE
|
5 is in this sequence because (73*10^5 + 143)/9 = 811127 is prime.
Initial terms and associated primes:
a(1) = 1, 97;
a(2) = 2, 827;;
a(3) = 5, 811127;
a(4) = 7, 81111127;
a(5) = 13, 81111111111127, etc.
|
|
MATHEMATICA
|
Select[Range[0, 100000], PrimeQ[(73*10^# + 143)/9] &]
|
|
PROG
|
(PARI) lista(nn) = for(n=1, nn, if(ispseudoprime((73*10^n + 143)/9), print1(n, ", "))); \\ Altug Alkan, Apr 22 2016
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|