login
A272190
Either 6th power of a prime, or product of the square of two different primes.
2
36, 64, 100, 196, 225, 441, 484, 676, 729, 1089, 1156, 1225, 1444, 1521, 2116, 2601, 3025, 3249, 3364, 3844, 4225, 4761, 5476, 5929, 6724, 7225, 7396, 7569, 8281, 8649, 8836, 9025, 11236, 12321, 13225, 13924, 14161, 14884, 15129, 15625, 16641, 17689, 17956, 19881
OFFSET
1,1
COMMENTS
Numbers such that the sum of the number of divisors of their aliquot parts is three times the number of their divisors.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..200 from Paolo P. Lava)
FORMULA
Sum_{n>=1} 1/a(n) = (P(2)^2 - P(4))/2 + P(6) = (A085548^2 - A085964)/2 + A085966 = 0.080837..., where P is the prime zeta function. - Amiram Eldar, Oct 03 2023
EXAMPLE
36 = 2^2 * 3^2; 64 = 2^6.
MAPLE
with(numtheory): P:=proc(q) local a, k, n; for n from 2 to q do a:=sort([op(divisors(n))]);
if 3*tau(n)= add(tau(a[k]), k=1..nops(a)-1) then print(n); fi; od; end: P(10^7);
MATHEMATICA
Select[Range[20000], MemberQ[{{6}, {2, 2}}, FactorInteger[#][[;; , 2]]] &] (* Amiram Eldar, Oct 03 2023 *)
PROG
(PARI) isok(n) = 3*numdiv(n) == sumdiv(n, d, (n!=d)*numdiv(d)); \\ Michel Marcus, Apr 22 2016
(PARI) is(n) = {my(e = factor(n)[, 2]~); e == [6] || e == [2, 2]; } \\ Amiram Eldar, Oct 03 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, Apr 22 2016
STATUS
approved