login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The a(n)-th composite number is twice the n-th prime.
3

%I #26 Aug 25 2024 02:49:36

%S 1,2,5,7,13,16,22,25,31,41,43,52,59,62,69,78,87,91,101,107,111,120,

%T 127,137,149,155,159,166,170,177,199,206,215,218,235,239,248,259,266,

%U 277,286,289,306,309,316,319,339,359,366,369,375,386,389,406,416,426,438

%N The a(n)-th composite number is twice the n-th prime.

%C Also the least k such that the n-th primorial (A002110) is a divisor of the k-th compositorial (A036691). - _Reinhard Zumkeller_, Sep 03 2002

%H Harry J. Smith, <a href="/A065897/b065897.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = 2*prime(n) - (pi(2*prime(n))) - 1, where pi = A000720.

%e a(7) = 22 because twice the 7th prime (2*17 = 34) is the 22nd composite number: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34.

%p A065897:=n->2*ithprime(n)-(numtheory[pi](2*ithprime(n)))-1: seq(A065897(n), n=1..100); # _Wesley Ivan Hurt_, Sep 16 2017

%t Table[2*Prime[n]-(PrimePi[2*Prime[n]])-1, {n, 128}]

%o (PARI) { for (n=1, 1000, f=2*prime(n); a=f - primepi(f) - 1; write("b065897.txt", n, " ", a) ) } \\ _Harry J. Smith_, Nov 04 2009

%o (Magma)

%o A065897:= func< n | 2*NthPrime(n) -1 -#PrimesUpTo(2*NthPrime(n)) >;

%o [A065897(n): n in [1..130]]; // _G. C. Greubel_, Aug 24 2024

%o (SageMath)

%o def A065897(n): return 2*nth_prime(n) -prime_pi(2*nth_prime(n)) -1

%o [A065897(n) for n in range(1,131)] # _G. C. Greubel_, Aug 24 2024

%Y Cf. A000720, A002110, A002808, A036691, A100484 (even semiprimes).

%K nonn,easy

%O 1,2

%A _Labos Elemer_, Nov 28 2001