login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065873
Numbers k such that usigma(k) +-1 are twin primes, where usigma(k) is the sum of the unitary divisors of k (A034448).
1
3, 5, 6, 10, 11, 17, 18, 20, 26, 29, 30, 38, 41, 44, 45, 46, 51, 55, 56, 59, 71, 80, 85, 88, 90, 98, 101, 105, 107, 114, 116, 118, 126, 132, 137, 140, 141, 145, 149, 150, 152, 153, 155, 158, 160, 161, 177, 178, 179, 185, 188, 191, 197, 203, 206, 207, 209, 212, 227
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harry J. Smith)
EXAMPLE
3 is a term since usigma(3) = 4 and (4-1, 4+1) = (3, 5) are twin primes.
MATHEMATICA
f[n_] := Block[ {a = FactorInteger[n], k = l = s = 1}, l = Length[a]; While[k <= l, s = s * (a[[k, 1]]^a[[k, 2]] + 1); k++ ]; Return[s]]; Select[ Range[250], PrimeQ[ f[ # ] + 1] && PrimeQ[ f[ # ] - 1] & ]
PROG
(PARI) usigma(n)= { local(f, s=1); f=factor(n); for(i=1, matsize(f)[1], s*=1 + f[i, 1]^f[i, 2]); return(s) }
{ n=0; for (m=1, 10^9, u=usigma(m); if (isprime(u - 1) && isprime(u + 1), write("b065873.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Nov 02 2009
(Magma) usigma:=func<n|&+[d:d in Divisors(n)| Gcd(d, n div d) eq 1]>; [k:k in [1..230]| IsPrime(a) and (NextPrime(a)-2 eq a) where a is usigma(k)-1]; // Marius A. Burtea, Jan 16 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Dec 07 2001
STATUS
approved