login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that usigma(k) +-1 are twin primes, where usigma(k) is the sum of the unitary divisors of k (A034448).
1

%I #21 Sep 08 2022 08:45:04

%S 3,5,6,10,11,17,18,20,26,29,30,38,41,44,45,46,51,55,56,59,71,80,85,88,

%T 90,98,101,105,107,114,116,118,126,132,137,140,141,145,149,150,152,

%U 153,155,158,160,161,177,178,179,185,188,191,197,203,206,207,209,212,227

%N Numbers k such that usigma(k) +-1 are twin primes, where usigma(k) is the sum of the unitary divisors of k (A034448).

%H Amiram Eldar, <a href="/A065873/b065873.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Harry J. Smith)

%e 3 is a term since usigma(3) = 4 and (4-1, 4+1) = (3, 5) are twin primes.

%t f[n_] := Block[ {a = FactorInteger[n], k = l = s = 1}, l = Length[a]; While[k <= l, s = s * (a[[k, 1]]^a[[k, 2]] + 1); k++ ]; Return[s]]; Select[ Range[250], PrimeQ[ f[ # ] + 1] && PrimeQ[ f[ # ] - 1] & ]

%o (PARI) usigma(n)= { local(f,s=1); f=factor(n); for(i=1, matsize(f)[1], s*=1 + f[i, 1]^f[i, 2]); return(s) }

%o { n=0; for (m=1, 10^9, u=usigma(m); if (isprime(u - 1) && isprime(u + 1), write("b065873.txt", n++, " ", m); if (n==1000, return)) ) } \\ _Harry J. Smith_, Nov 02 2009

%o (Magma) usigma:=func<n|&+[d:d in Divisors(n)| Gcd(d,n div d) eq 1]>; [k:k in [1..230]| IsPrime(a) and (NextPrime(a)-2 eq a) where a is usigma(k)-1]; // _Marius A. Burtea_, Jan 16 2020

%Y Cf. A001097, A001359, A014574, A006512, A034448.

%K nonn

%O 1,1

%A _Robert G. Wilson v_, Dec 07 2001