login
A064149
Indices of zeros of third differences of primes: Numbers k such that A036264(k) = 0.
8
7, 11, 13, 18, 22, 49, 54, 58, 69, 70, 75, 85, 91, 104, 111, 116, 122, 123, 127, 132, 173, 182, 206, 210, 225, 226, 236, 244, 253, 256, 260, 269, 271, 275, 284, 299, 300, 309, 321, 328, 351, 364, 367, 375, 388, 390, 391, 395, 406, 411, 413, 420, 421, 422, 435
OFFSET
1,1
COMMENTS
Original definition: "Numbers k such that A036263(k) = A036263(k+1), using signed version of A036263."
LINKS
MAPLE
q:= n-> is(add(ithprime(n+i)*binomial(3, i)*(-1)^i, i=0..3)=0):
select(q, [$1..500])[]; # Alois P. Heinz, Oct 15 2024
MATHEMATICA
Position[Differences[Prime[Range[1000]], 3], 0] // Flatten (* Jean-François Alcover, Nov 20 2024 *)
PROG
(PARI) { n=0; for (m=1, 10^9, if (prime(m) + 3*prime(m + 2) == 3*prime(m + 1) + prime(m + 3), write("b064149.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 09 2009
(PARI) select( {is_A064149(n)=!A064149(n)}, [1..444]) \\ M. F. Hasler, Oct 15 2024
(PARI) my(D(v)=v[^1]-v[^-1]); select(t->!t, D(D(D(primes(444)))), 1) \\ M. F. Hasler, Oct 15 2024
CROSSREFS
Cf. A036263 (2nd differences of primes), A036264 (3rd differences of primes).
Sequence in context: A153321 A060772 A257125 * A046289 A092246 A084468
KEYWORD
easy,nonn,changed
AUTHOR
Jason Earls, Sep 11 2001
EXTENSIONS
Definition edited by M. F. Hasler, Oct 15 2024
STATUS
approved