login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064152
Erdős primes: primes p such that all p-k! for 1 <= k! < p are composite.
2
2, 101, 211, 367, 409, 419, 461, 557, 673, 709, 769, 937, 967, 1009, 1201, 1259, 1709, 1831, 1889, 2141, 2221, 2309, 2351, 2411, 2437, 2539, 2647, 2837, 2879, 3011, 3019, 3041, 3049, 3079, 3163, 3217, 3221, 3359, 3389, 3499, 3593, 3671, 3709, 3833, 3851
OFFSET
1,1
COMMENTS
Numbers of Erdős primes <= 10^j for j = 1,2,3, ... are 1, 1, 13, 95, 901, 7875, 71140, 646242, 5901409, ... For large j the asymptotic law seems to be #E(10^j) ~ (1/8)*(10^j/(j*log(10))). If so the sequence is infinite.
REFERENCES
Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section A2, p. 11.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..7875 from T. D. Noe)
MATHEMATICA
q[n_] := Module[{k = 1}, While[k! < n && ! PrimeQ[n - k!], k++]; k! >= n]; Select[Prime[Range[550]], q] (* Amiram Eldar, Mar 21 2024 *)
PROG
(PARI) { n=0; for (m=1, 10^9, p=prime(m); k=f=b=1; while ((f*=k) < p, if (isprime(p-f), b=0; break); k++); if (b, write("b064152.txt", n++, " ", p); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 09 2009
CROSSREFS
Sequence in context: A195903 A042249 A157338 * A162353 A088272 A125819
KEYWORD
easy,nonn
AUTHOR
Felice Russo, Sep 13 2001
STATUS
approved