login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064146
Sum of non-unitary prime divisors of binomial(n,floor(n/2)).
1
0, 0, 0, 0, 0, 2, 0, 0, 3, 5, 0, 2, 2, 2, 3, 3, 0, 2, 0, 2, 2, 2, 0, 2, 7, 7, 10, 10, 5, 5, 3, 3, 3, 5, 5, 7, 7, 7, 3, 5, 2, 2, 2, 2, 10, 10, 8, 10, 12, 12, 12, 12, 9, 9, 2, 2, 2, 2, 2, 2, 2, 2, 10, 10, 7, 9, 7, 9, 5, 5, 0, 2, 2, 2, 7, 7, 14, 14, 7, 9, 12, 12, 5, 5, 10, 10, 10, 10, 5, 5, 12, 12, 12
OFFSET
1,6
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..7500 (first 1000 terms from Harry J. Smith)
FORMULA
a(n) = A063958(A001405(n)).
MAPLE
a:= n-> add(`if`(i[2]>1, i[1], 0), i=ifactors(binomial(n, iquo(n, 2)))[2]):
seq(a(n), n=1..100); # Alois P. Heinz, Jun 24 2018
MATHEMATICA
a[n_] := Sum[If[i[[2]] > 1, i[[1]], 0], {i, FactorInteger[ Binomial[n, Quotient[n, 2]]]}];
Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Mar 02 2022, after Alois P. Heinz *)
PROG
(PARI) a(n) = { my(f=factor(binomial(n, n\2))); sum(i=1, #f~, if (f[i, 2]>1, f[i, 1])) } \\ Harry J. Smith, Sep 09 2009
KEYWORD
nonn,changed
AUTHOR
Labos Elemer, Sep 11 2001
STATUS
approved