login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063958
Sum of the non-unitary prime divisors of n: sum of those prime divisors for which the exponent in the prime factorization exceeds 1.
7
0, 0, 0, 2, 0, 0, 0, 2, 3, 0, 0, 2, 0, 0, 0, 2, 0, 3, 0, 2, 0, 0, 0, 2, 5, 0, 3, 2, 0, 0, 0, 2, 0, 0, 0, 5, 0, 0, 0, 2, 0, 0, 0, 2, 3, 0, 0, 2, 7, 5, 0, 2, 0, 3, 0, 2, 0, 0, 0, 2, 0, 0, 3, 2, 0, 0, 0, 2, 0, 0, 0, 5, 0, 0, 5, 2, 0, 0, 0, 2, 3, 0, 0, 2, 0, 0, 0, 2, 0, 3, 0, 2, 0, 0, 0, 2, 0, 7, 3, 7, 0, 0, 0, 2, 0
OFFSET
1,4
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..20000 (first 1000 terms from Harry J. Smith)
FORMULA
G.f.: Sum_{k>=1} prime(k) * x^(prime(k)^2) / (1 - x^(prime(k)^2)). - Ilya Gutkovskiy, Apr 06 2020
a(n) = sopf(rad(n/rad(n))). - Wesley Ivan Hurt, Nov 21 2021
a(n) = Sum_{p^2|n} p. - Wesley Ivan Hurt, Feb 21 2022
From Amiram Eldar, Jul 24 2024: (Start)
a(n) = A008472(n) - A063956(n).
Additive with a(p^e) = p if e >= 2, and 0 otherwise. (End)
MAPLE
a:= proc(n) option remember; add(`if`(i[2]>1, i[1], 0), i=ifactors(n)[2]) end:
seq(a(n), n=1..100); # Alois P. Heinz, Jun 24 2018
MATHEMATICA
Array[Total@ Select[FactorInteger@ #, Last@ # > 1 &][[All, 1]] &, 105] (* Michael De Vlieger, Dec 06 2018 *)
PROG
(PARI) { for (n=1, 1000, f=factor(n)~; a=0; for (i=1, length(f), if (f[2, i]>1, a+=f[1, i])); write("b063958.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 04 2009
CROSSREFS
Cf. A007947 (rad), A008472 (sopf).
Sequence in context: A263145 A057108 A349435 * A349434 A126164 A340317
KEYWORD
nonn,easy
AUTHOR
Labos Elemer, Sep 04 2001
STATUS
approved