login
A153321
Primes p such that p^2 - 60 and p^2 + 60 are also primes.
4
7, 11, 13, 17, 41, 83, 109, 127, 151, 193, 223, 409, 619, 673, 701, 769, 809, 839, 1439, 1571, 1693, 1721, 2311, 2593, 2659, 2741, 2969, 3037, 3041, 3221, 3331, 3343, 3389, 3727, 3767, 3833, 4703, 4733, 4861, 4871, 4931, 5167, 5209, 5261, 5387, 5393, 5407
OFFSET
1,1
MATHEMATICA
fQ[n_]:=PrimeQ[n^2-60]&&PrimeQ[n^2+60]; lst={}; Do[If[fQ@Prime[n], AppendTo[lst, Prime[n]]], {n, 7!}]; lst
p260Q[n_]:=Module[{c=n^2}, And@@PrimeQ[{c-60, c+60}]]; Select[Prime[Range[ 800]], p260Q] (* Harvey P. Dale, Mar 06 2012 *)
PROG
(Magma) [p: p in PrimesUpTo(5000)|IsPrime(p^2-60) and IsPrime(p^2+60)] // Vincenzo Librandi, Jan 30 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved