login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063626
Smallest k >= 0 such that 9^k has exactly n 0's in its decimal representation.
6
0, 5, 11, 41, 33, 38, 42, 27, 60, 71, 63, 85, 94, 139, 96, 127, 157, 166, 131, 160, 170, 148, 190, 210, 212, 203, 221, 222, 218, 257, 223, 243, 250, 275, 302, 255, 273, 271, 333, 372, 270, 339, 371, 457, 408, 347, 402, 410, 483, 448, 355
OFFSET
0,2
MATHEMATICA
a = {}; Do[k = 0; While[ Count[ IntegerDigits[9^k], 0] != n, k++ ]; a = Append[a, k], {n, 0, 50} ]; a
PROG
(PARI) A063626(n)=for(k=0, oo, #select(d->!d, digits(9^k))==n&&return(k)) \\ M. F. Hasler, Jun 15 2018
CROSSREFS
Cf. A031146 (analog for 2^k), A063555 (for 3^k), A063575 (for 4^k), A063585 (for 5^k), A063596 (for 6^k), A063606 (for 7^k), A063616 (for 8^k).
Sequence in context: A212199 A276663 A187984 * A154297 A089441 A046121
KEYWORD
base,nonn
AUTHOR
Robert G. Wilson v, Aug 10 2001
EXTENSIONS
a(0) changed to 0 (as in A031146, A063555, ...) and better title from M. F. Hasler, Jun 15 2018
STATUS
approved