login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063606
Smallest k >= 0 such that 7^k has exactly n 0's in its decimal representation.
9
0, 4, 9, 13, 25, 55, 39, 41, 45, 70, 69, 65, 75, 107, 109, 134, 167, 142, 156, 196, 157, 205, 214, 180, 213, 183, 162, 251, 263, 276, 268, 290, 306, 295, 369, 313, 332, 293, 353, 340, 357, 387, 367, 476, 334, 509, 363, 474, 454, 488, 453
OFFSET
0,2
MATHEMATICA
a = {}; Do[k = 0; While[ Count[ IntegerDigits[7^k], 0] != n, k++ ]; a = Append[a, k], {n, 0, 50} ]; a
Module[{p7=DigitCount[#, 10, 0]&/@(7^Range[600]), nn=60}, Join[{0}, Flatten[ Table[ Position[p7, n, 1, 1], {n, nn}]]]] (* Harvey P. Dale, Apr 12 2022 *)
PROG
(PARI) A063606(n)=for(k=n, oo, #select(d->!d, digits(5^k))==n&&return(k)) \\ M. F. Hasler, Jun 14 2018
CROSSREFS
Cf. A031146 (analog for 2^k), A063555 (analog for 3^k), A063575 (analog for 4^k), A063585 (for 5^k), A063596 (analog for 6^k).
Sequence in context: A048261 A340771 A333848 * A033287 A041323 A319217
KEYWORD
base,nonn
AUTHOR
Robert G. Wilson v, Aug 10 2001
STATUS
approved