|
|
A340771
|
|
Numbers which are the sum of some number of consecutive prime squares.
|
|
2
|
|
|
4, 9, 13, 25, 34, 38, 49, 74, 83, 87, 121, 169, 170, 195, 204, 208, 289, 290, 339, 361, 364, 373, 377, 458, 529, 579, 628, 650, 653, 662, 666, 819, 841, 890, 940, 961, 989, 1014, 1023, 1027, 1179, 1348, 1369, 1370, 1469, 1518, 1543, 1552, 1556, 1681, 1731, 1802, 1849
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
EXAMPLE
|
The initial terms are 2^2, 3^2, 2^2+3^2, 5^2, 3^2+5^2, ...
|
|
MAPLE
|
N:= 10000: # for terms <= N
PS:= [0, seq(ithprime(i)^2, i=1..numtheory:-pi(floor(sqrt(N))))]:
SPS:= ListTools:-PartialSums(PS):
sort(convert(select(`<=`, {seq(seq(SPS[t]-SPS[s], s=1..t-1), t=2..nops(SPS))}, N), list)); # Robert Israel, Jan 20 2021
|
|
PROG
|
(PARI) lista(nn) = {my(list = List(), ip = primepi(nn), vp = primes(ip)); for(i=1, ip, my(s=vp[i]^2); listput(list, s); for (j=i+1, ip, s += vp[j]^2; if (s >vp[ip]^2, break); listput(list, s); ); ); Vec(vecsort(list, , 8)); } \\ Michel Marcus, Jan 20 2021
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|