|
|
A063603
|
|
Smallest k such that 6^k has exactly n 7's in its decimal representation.
|
|
0
|
|
|
1, 7, 9, 5, 26, 35, 30, 48, 72, 60, 65, 77, 100, 127, 146, 130, 152, 150, 155, 230, 205, 192, 201, 234, 274, 255, 279, 286, 249, 297, 292, 321, 312, 331, 225, 335, 396, 342, 345, 405, 370, 385, 445, 461, 503, 442, 480, 469, 473, 518, 510
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Table of n, a(n) for n=1..51.
|
|
MATHEMATICA
|
a = {}; Do[k = 1; While[ Count[ IntegerDigits[6^k], 7] != n, k++ ]; a = Append[a, k], {n, 0, 50} ]; a
Join[{1}, Flatten[With[{p6=6^Range[650]}, Table[First[Position[p6, _?(Count[ IntegerDigits[#], 7]==n&)]], {n, 55}]]]] (* Harvey P. Dale, Oct 03 2011 *)
|
|
CROSSREFS
|
Sequence in context: A215736 A132715 A154910 * A218360 A020788 A198921
Adjacent sequences: A063600 A063601 A063602 * A063604 A063605 A063606
|
|
KEYWORD
|
base,nonn
|
|
AUTHOR
|
Robert G. Wilson v, Aug 10 2001
|
|
EXTENSIONS
|
Name corrected by Jon E. Schoenfield, Jun 26 2018
|
|
STATUS
|
approved
|
|
|
|