

A198921


Decimal expansion of x>0 satisfying 3*x^2+3*cos(x)=4.


2



7, 9, 6, 1, 6, 7, 2, 6, 3, 0, 8, 3, 4, 1, 6, 0, 4, 4, 9, 9, 6, 7, 0, 6, 2, 1, 3, 3, 3, 2, 0, 5, 7, 0, 1, 3, 8, 1, 2, 9, 7, 9, 7, 9, 3, 2, 6, 4, 2, 0, 0, 9, 3, 5, 1, 5, 6, 3, 6, 4, 4, 5, 2, 9, 7, 4, 3, 1, 1, 7, 2, 2, 3, 6, 9, 0, 7, 6, 4, 0, 1, 5, 3, 9, 9, 3, 5, 9, 6, 2, 4, 3, 0, 4, 8, 0, 8, 3, 0
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

See A198755 for a guide to related sequences. The Mathematica program includes a graph.


LINKS

Table of n, a(n) for n=0..98.


EXAMPLE

x=0.79616726308341604499670621333205701...


MATHEMATICA

a = 3; b = 3; c = 4;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, 2, 2}, {AxesOrigin > {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .79, .8}, WorkingPrecision > 110]
RealDigits[r] (* A198921 *)


CROSSREFS

Cf. A198755.
Sequence in context: A063603 A218360 A020788 * A099877 A197327 A199471
Adjacent sequences: A198918 A198919 A198920 * A198922 A198923 A198924


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Oct 31 2011


STATUS

approved



