

A197327


Decimal expansion of least x > 0 having sin(x) = sin(Pi*x/4)^2.


2



1, 7, 9, 6, 4, 2, 6, 1, 6, 0, 2, 6, 2, 7, 7, 8, 6, 5, 5, 3, 0, 3, 2, 2, 3, 6, 0, 5, 7, 6, 2, 6, 7, 6, 3, 0, 9, 7, 4, 4, 2, 9, 6, 2, 4, 6, 0, 4, 8, 0, 9, 2, 4, 6, 0, 6, 7, 1, 0, 6, 3, 7, 4, 8, 2, 6, 0, 1, 6, 7, 1, 1, 3, 9, 5, 4, 4, 0, 2, 8, 6, 8, 5, 5, 3, 2, 5, 4, 8, 4, 3, 8, 1, 7, 3, 1, 6, 0, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The Mathematica program includes a graph. See A197133 for a guide to least x > 0 satisfying sin(b*x) = sin(c*x)^2 for selected b and c.


LINKS

Table of n, a(n) for n=1..99.


EXAMPLE

x=1.79642616026277865530322360576267630...


MATHEMATICA

b = 1; c = Pi/4; f[x_] := Sin[x]
t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, 1.5, 2}, WorkingPrecision > 200]
RealDigits[t] (* A197327 *)
Plot[{f[b*x], f[c*x]^2}, {x, 0, 2}]


CROSSREFS

Cf. A197133.
Sequence in context: A020788 A198921 A099877 * A199471 A200098 A239069
Adjacent sequences: A197324 A197325 A197326 * A197328 A197329 A197330


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Oct 13 2011


STATUS

approved



