login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212199
Expansion of (1 + 3*x + 4*x^2 - sqrt(1 - 2*x - 7*x^2))/(4 + 8*x).
1
0, 1, 0, 1, 1, 5, 11, 39, 113, 377, 1207, 4043, 13509, 45957, 157171, 542671, 1884665, 6586993, 23137647, 81662355, 289414157, 1029598333, 3675337963, 13160833623, 47261437761, 170164260713, 614154154791, 2221545593179, 8052506141653, 29244341625077, 106397352342243, 387745600670175, 1415284544031241, 5173441096267489, 18937206005320415, 69409364862108451
OFFSET
0,6
LINKS
Sergey Kitaev, Pavel Salimov, Christopher Severs, and Henning Ulfarsson, Restricted rooted non-separable planar maps, arXiv:1202.1790 [math.CO], 2012.
S. Kitaev, P. Salimov, C. Severs and H. Ulfarsson, Restricted non-separable planar maps and some pattern avoiding permutations, preprint 2012. [N. J. A. Sloane, Jan 01 2013]
FORMULA
a(n) ~ sqrt(44-31*sqrt(2))*(1+2*sqrt(2))^n/(4*n^(3/2)*sqrt(Pi)). - Vaclav Kotesovec, Jun 29 2013
D-finite with recurrence: n*a(n) +3*a(n-1) -(11*n-27)*a(n-2) -14*(n-3)*a(n-3) = 0 for n>4. - Bruno Berselli, Jul 18 2013
Let T(n, k) = 2^k*binomial(n-k, k)*hypergeom([-k, k-n-1], [2], 1) then
a(n) = Sum_{k=0..(n-3)/2} T(n-3, k) if n != 1. - Peter Luschny, Oct 19 2020
MAPLE
T := (n, k) -> simplify(2^k*binomial(n-k, k)*hypergeom([-k, k-n-1], [2], 1)):
[0, 1, 0, seq(add(T(n, k), k=0..floor(n/2)), n=0..32)]; # Peter Luschny, Oct 19 2020
MATHEMATICA
CoefficientList[Series[(1 + 3 x + 4 x^2 - Sqrt[1 - 2 x - 7 x^2]) / (4 + 8 x), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 18 2013 *)
PROG
(PARI) x='x+O('x^50); concat([0], Vec((1+3*x+4*x^2-sqrt(1-2*x-7*x^2))/(4+8*x))) \\ G. C. Greubel, Mar 30 2017
CROSSREFS
Sequence in context: A197337 A302766 A369982 * A276663 A187984 A063626
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 11 2012
STATUS
approved