login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302766
a(n) = n*((4*n + 1)*(7*n - 4) + 15*n*(-1)^n)/48.
1
0, 5, 11, 39, 60, 130, 175, 306, 384, 595, 715, 1025, 1196, 1624, 1855, 2420, 2720, 3441, 3819, 4715, 5180, 6270, 6831, 8134, 8800, 10335, 11115, 12901, 13804, 15860, 16895, 19240, 20416, 23069, 24395, 27375, 28860, 32186, 33839, 37530, 39360, 43435, 45451
OFFSET
1,2
COMMENTS
Consider the partitions of n into two parts (p,q). Then 2*a(n) represents the total surface area of the family of rectangular prisms with dimensions p, q and (p + q).
FORMULA
a(n) = Sum_{i=1..floor(n/2)} n*i + n*(n-i) + i*(n-i).
a(n) = floor(n/2)*(6*n^2+3*n-1+3*(n-1)*floor(n/2)-2*floor(n/2)^2)/6.
From Colin Barker, Apr 13 2018: (Start)
G.f.: x^2*(5 + 6*x + 13*x^2 + 3*x^3 + x^4) / ((1 - x)^4*(1 + x)^3).
a(n) = (14*n^3 + 3*n^2 - 2*n) / 24 for n even.
a(n) = (14*n^3 - 12*n^2 - 2*n) / 24 for n odd.
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n>7. (End)
MATHEMATICA
Table[Floor[n/2] (6 n^2 + 3 n - 1 + 3 (n - 1) Floor[n/2] - 2 Floor[n/2]^2)/6, {n, 50}]
PROG
(Magma) [Floor(n/2)*(6*n^2+3*n-1+3*(n-1)*Floor(n/2)-2*Floor(n/2)^2)/6 : n in [1..45]]; // Vincenzo Librandi, Apr 13 2018
(PARI) a(n) = floor(n/2)*(6*n^2+3*n-1+3*(n-1)*floor(n/2)-2*floor(n/2)^2)/6 \\ Felix Fröhlich, Apr 13 2018
(PARI) concat(0, Vec(x^2*(5 + 6*x + 13*x^2 + 3*x^3 + x^4) / ((1 - x)^4*(1 + x)^3) + O(x^60))) \\ Colin Barker, Apr 13 2018
(GAP) List([1..50], n -> n*((4*n+1)*(7*n-4)+15*n*(-1)^n)/48); # Bruno Berselli, Apr 16 2018
CROSSREFS
Sequence in context: A042719 A045717 A197337 * A369982 A212199 A276663
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Apr 12 2018
STATUS
approved