login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n*((4*n + 1)*(7*n - 4) + 15*n*(-1)^n)/48.
1

%I #20 Sep 08 2022 08:46:21

%S 0,5,11,39,60,130,175,306,384,595,715,1025,1196,1624,1855,2420,2720,

%T 3441,3819,4715,5180,6270,6831,8134,8800,10335,11115,12901,13804,

%U 15860,16895,19240,20416,23069,24395,27375,28860,32186,33839,37530,39360,43435,45451

%N a(n) = n*((4*n + 1)*(7*n - 4) + 15*n*(-1)^n)/48.

%C Consider the partitions of n into two parts (p,q). Then 2*a(n) represents the total surface area of the family of rectangular prisms with dimensions p, q and (p + q).

%H Colin Barker, <a href="/A302766/b302766.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-3,-3,3,1,-1).

%F a(n) = Sum_{i=1..floor(n/2)} n*i + n*(n-i) + i*(n-i).

%F a(n) = floor(n/2)*(6*n^2+3*n-1+3*(n-1)*floor(n/2)-2*floor(n/2)^2)/6.

%F From _Colin Barker_, Apr 13 2018: (Start)

%F G.f.: x^2*(5 + 6*x + 13*x^2 + 3*x^3 + x^4) / ((1 - x)^4*(1 + x)^3).

%F a(n) = (14*n^3 + 3*n^2 - 2*n) / 24 for n even.

%F a(n) = (14*n^3 - 12*n^2 - 2*n) / 24 for n odd.

%F a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n>7. (End)

%t Table[Floor[n/2] (6 n^2 + 3 n - 1 + 3 (n - 1) Floor[n/2] - 2 Floor[n/2]^2)/6, {n, 50}]

%o (Magma) [Floor(n/2)*(6*n^2+3*n-1+3*(n-1)*Floor(n/2)-2*Floor(n/2)^2)/6 : n in [1..45]]; // _Vincenzo Librandi_, Apr 13 2018

%o (PARI) a(n) = floor(n/2)*(6*n^2+3*n-1+3*(n-1)*floor(n/2)-2*floor(n/2)^2)/6 \\ _Felix Fröhlich_, Apr 13 2018

%o (PARI) concat(0, Vec(x^2*(5 + 6*x + 13*x^2 + 3*x^3 + x^4) / ((1 - x)^4*(1 + x)^3) + O(x^60))) \\ _Colin Barker_, Apr 13 2018

%o (GAP) List([1..50], n -> n*((4*n+1)*(7*n-4)+15*n*(-1)^n)/48); # _Bruno Berselli_, Apr 16 2018

%Y Cf. A302647, A302758.

%K nonn,easy

%O 1,2

%A _Wesley Ivan Hurt_, Apr 12 2018