login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302647
a(n) = (2*n^2*(n^2 - 3) - (2*n^2 + 1)*(-1)^n + 1)/64.
3
0, 0, 2, 6, 18, 36, 72, 120, 200, 300, 450, 630, 882, 1176, 1568, 2016, 2592, 3240, 4050, 4950, 6050, 7260, 8712, 10296, 12168, 14196, 16562, 19110, 22050, 25200, 28800, 32640, 36992, 41616, 46818, 52326, 58482, 64980, 72200, 79800, 88200, 97020, 106722
OFFSET
1,3
COMMENTS
Consider the partitions of n into two parts (s,t) where s <= t. Then a(n) represents the total volume of all rectangular prisms with dimensions s, t, and |t-s|.
Take a chessboard of (n+1) X (n+1) unit squares in which the a1 square is black. a(n) is the number of composite rectangles of p X q unit squares whose vertices are covered by white unit squares (1 < p <= n+1, 1 < q <= n+1). For example, in a 4 X 4 chessboard there are two such rectangles (for both rectangles p=q=3) and the coordinates of their lower left vertices are a2 and b1), i.e., a(3)=2. For the number of composite rectangles whose vertices are covered by black unit squares see A317714. - Ivan N. Ianakiev, Aug 22 2018
Also the graph crossing number of the (n+2)-barbell graph (assuming Guy's conjecture). - Eric W. Weisstein, May 17 2023
LINKS
Eric Weisstein's World of Mathematics, Barbell Graph
Eric Weisstein's World of Mathematics, Graph Crossing Number
FORMULA
a(n) = Sum_{k=1..floor(n/2)} k * (n-k) * (n-2*k).
a(n) = (1/2)*floor(n/2)*(1+floor(n/2))*(floor(n/2)-n)*(1-n+floor(n/2)).
From Colin Barker, Apr 11 2018: (Start)
G.f.: 2*x^3*(1 + x + x^2) / ((1 - x)^5*(1 + x)^3).
a(n) = n^2*(n-2)*(n+2) / 32 for n even.
a(n) = (n^2 - 1)^2 / 32 for n odd.
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8) for n>8.
(End)
a(n) = 2 * A028723(n+2). - Alois P. Heinz, Apr 12 2018
a(n) = 2 * binomial(floor((n+1)/2),2) * binomial(floor((n+2)/2),2). - Bruno Berselli, Apr 12 2018
MATHEMATICA
Table[(1/2)*Floor[n/2]*(1 + Floor[n/2])*(Floor[n/2] - n)*(1 - n + Floor[n/2]), {n, 100}]
LinearRecurrence[{2, 2, -6, 0, 6, -2, -2, 1}, {0, 0, 2, 6, 18, 36, 72, 120}, 20] (* Eric W. Weisstein, May 17 2023 *)
Table[(1 - (-1)^n - 2 (3 + (-1)^n) n^2 + 2 n^4)/64, {n, 20}] (* Eric W. Weisstein, May 17 2023 *)
CoefficientList[Series[-2 x^2 (1 + x + x^2)/((-1 + x)^5 (1 + x)^3), {x, 0, 20}], x] (* Eric W. Weisstein, May 17 2023 *)
PROG
(Magma) [(1/2)*Floor(n/2)*(1+Floor(n/2))*(Floor(n/2)-n)*(1-n+Floor(n/2)): n in [1..45]]; // Vincenzo Librandi, Apr 11 2018
CROSSREFS
Cf. A028723.
Positive terms are the third column of the triangle in A145118.
Sequence in context: A328633 A368566 A064842 * A324580 A338765 A339149
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Apr 10 2018
STATUS
approved