login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (2*n^2*(n^2 - 3) - (2*n^2 + 1)*(-1)^n + 1)/64.
3

%I #50 May 19 2023 07:37:25

%S 0,0,2,6,18,36,72,120,200,300,450,630,882,1176,1568,2016,2592,3240,

%T 4050,4950,6050,7260,8712,10296,12168,14196,16562,19110,22050,25200,

%U 28800,32640,36992,41616,46818,52326,58482,64980,72200,79800,88200,97020,106722

%N a(n) = (2*n^2*(n^2 - 3) - (2*n^2 + 1)*(-1)^n + 1)/64.

%C Consider the partitions of n into two parts (s,t) where s <= t. Then a(n) represents the total volume of all rectangular prisms with dimensions s, t, and |t-s|.

%C Take a chessboard of (n+1) X (n+1) unit squares in which the a1 square is black. a(n) is the number of composite rectangles of p X q unit squares whose vertices are covered by white unit squares (1 < p <= n+1, 1 < q <= n+1). For example, in a 4 X 4 chessboard there are two such rectangles (for both rectangles p=q=3) and the coordinates of their lower left vertices are a2 and b1), i.e., a(3)=2. For the number of composite rectangles whose vertices are covered by black unit squares see A317714. - _Ivan N. Ianakiev_, Aug 22 2018

%C Also the graph crossing number of the (n+2)-barbell graph (assuming Guy's conjecture). - _Eric W. Weisstein_, May 17 2023

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BarbellGraph.html">Barbell Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GraphCrossingNumber.html">Graph Crossing Number</a>

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (2,2,-6,0,6,-2,-2,1).

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%F a(n) = Sum_{k=1..floor(n/2)} k * (n-k) * (n-2*k).

%F a(n) = (1/2)*floor(n/2)*(1+floor(n/2))*(floor(n/2)-n)*(1-n+floor(n/2)).

%F From _Colin Barker_, Apr 11 2018: (Start)

%F G.f.: 2*x^3*(1 + x + x^2) / ((1 - x)^5*(1 + x)^3).

%F a(n) = n^2*(n-2)*(n+2) / 32 for n even.

%F a(n) = (n^2 - 1)^2 / 32 for n odd.

%F a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8) for n>8.

%F (End)

%F a(n) = 2 * A028723(n+2). - _Alois P. Heinz_, Apr 12 2018

%F a(n) = 2 * binomial(floor((n+1)/2),2) * binomial(floor((n+2)/2),2). - _Bruno Berselli_, Apr 12 2018

%t Table[(1/2)*Floor[n/2]*(1 + Floor[n/2])*(Floor[n/2] - n)*(1 - n + Floor[n/2]), {n, 100}]

%t LinearRecurrence[{2, 2, -6, 0, 6, -2, -2, 1}, {0, 0, 2, 6, 18, 36, 72, 120}, 20] (* _Eric W. Weisstein_, May 17 2023 *)

%t Table[(1 - (-1)^n - 2 (3 + (-1)^n) n^2 + 2 n^4)/64, {n, 20}] (* _Eric W. Weisstein_, May 17 2023 *)

%t CoefficientList[Series[-2 x^2 (1 + x + x^2)/((-1 + x)^5 (1 + x)^3), {x, 0, 20}], x] (* _Eric W. Weisstein_, May 17 2023 *)

%o (Magma) [(1/2)*Floor(n/2)*(1+Floor(n/2))*(Floor(n/2)-n)*(1-n+Floor(n/2)): n in [1..45]]; // _Vincenzo Librandi_, Apr 11 2018

%Y Cf. A028723.

%Y Positive terms are the third column of the triangle in A145118.

%K nonn,easy

%O 1,3

%A _Wesley Ivan Hurt_, Apr 10 2018