OFFSET
1,1
COMMENTS
Numbers n for which A276087(n) is a multiple of 6, but not of 5.
Question: Is the even bisection of A328316, starting from A328316(4) as: 6, 18, 43218, ..., a subsequence of this sequence? See also A328317.
Subsequence such that both k and A276087(k) are in this sequence starts as: 2, 6, 18, 34, 36, 48, 66, 154, 156, 186, 234, 244, 294, 312, 324, 354, 364, 384, 426, 438, 454, 456, 542, 546, 558, 588, 606, ...
When A276086 is applied to any number which is a multiple of 6, but not of 5 (and thus not a multiple of 30, implying that the number's primorial expansion ends with "x00", where x <> 0, and A257993(n) = 3), the original number will be converted to a number of the form 30k+5 or 30k+25 (A084967) whose primorial expansion ends either as "...021" or as "...401", with the least significant zero in position A328578(n), which is seen to be always either 3 or 2.
LINKS
EXAMPLE
294 = 7^2 * 3 * 2 has primorial base expansion (A049345) "12400", which, when converted to a prime product form (A276086) yields 11^1 * 7^2 * 5^4 * 3^0 * 2^0 = 336875. This in turn has primorial base representation [11,2,9,1,0,2,1], which when converted to prime product form gives 17^11 * 13^2 * 11^9 * 7^1 * 5^0 * 3^2 * 2^1 = 1720796647657111567992931482, which has the required property of being a multiple of 6 but not of 5, thus 294 is included in this sequence.
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 27 2019
STATUS
approved