login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328762
Numbers n for which 2 < A257993(A276086(A276086(n))) < A257993(n), where A276086 converts the primorial base expansion of n into its prime product form, and A257993 returns the index of the least prime not present in its argument.
5
210, 1470, 5250, 6510, 7140, 8400, 9450, 10710, 14490, 15750, 16380, 17640, 18690, 19950, 23730, 24990, 25620, 26880, 27930, 29190, 30030, 31290, 32340, 33600, 37380, 38640, 39270, 40530, 41580, 42840, 46620, 47880, 48510, 49770, 50820, 52080, 55860, 57120, 57750, 59010, 60270, 61530, 63420, 65730, 69510, 70770, 72660, 74970
OFFSET
1,1
COMMENTS
All terms are multiples of 5 (and thus of 30), because when applied to any number which is a multiple of 6, but not of 5 (and thus not a multiple of 30, implying that the primorial expansion ends with "x00", where x <> 0, and A257993(n) = 3), A276086 will yield a number of the form 30k+5 or 30k+25 (A084967) whose primorial expansion ends either as "...021" or as "...401" (with the least significant zero either in position 2 or 3), thus A328578(n) = A257993(A276086(A276086(n))) cannot simultaneously be larger than 2 and smaller than A257993(n).
PROG
(PARI)
A257993(n) = { for(i=1, oo, if(n%prime(i), return(i))); }
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
isA328762(n) = { my(u=A328578(n)); ((u > 2) && (u < A257993(n))); };
CROSSREFS
Setwise difference A328587 \ A328632.
Sequence in context: A157408 A333771 A118281 * A047633 A187317 A187309
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 27 2019
STATUS
approved