login
A328762
Numbers n for which 2 < A257993(A276086(A276086(n))) < A257993(n), where A276086 converts the primorial base expansion of n into its prime product form, and A257993 returns the index of the least prime not present in its argument.
5
210, 1470, 5250, 6510, 7140, 8400, 9450, 10710, 14490, 15750, 16380, 17640, 18690, 19950, 23730, 24990, 25620, 26880, 27930, 29190, 30030, 31290, 32340, 33600, 37380, 38640, 39270, 40530, 41580, 42840, 46620, 47880, 48510, 49770, 50820, 52080, 55860, 57120, 57750, 59010, 60270, 61530, 63420, 65730, 69510, 70770, 72660, 74970
OFFSET
1,1
COMMENTS
All terms are multiples of 5 (and thus of 30), because when applied to any number which is a multiple of 6, but not of 5 (and thus not a multiple of 30, implying that the primorial expansion ends with "x00", where x <> 0, and A257993(n) = 3), A276086 will yield a number of the form 30k+5 or 30k+25 (A084967) whose primorial expansion ends either as "...021" or as "...401" (with the least significant zero either in position 2 or 3), thus A328578(n) = A257993(A276086(A276086(n))) cannot simultaneously be larger than 2 and smaller than A257993(n).
PROG
(PARI)
A257993(n) = { for(i=1, oo, if(n%prime(i), return(i))); }
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
isA328762(n) = { my(u=A328578(n)); ((u > 2) && (u < A257993(n))); };
CROSSREFS
Setwise difference A328587 \ A328632.
Sequence in context: A157408 A333771 A118281 * A047633 A187317 A187309
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 27 2019
STATUS
approved