login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328578
Index of the least prime not dividing A276086(A276086(n)): a(n) = A257993(A276087(n)).
25
2, 1, 3, 1, 4, 1, 3, 1, 4, 1, 5, 1, 2, 1, 5, 1, 4, 1, 3, 1, 6, 1, 6, 1, 2, 1, 6, 1, 7, 1, 2, 1, 4, 1, 3, 1, 3, 1, 5, 1, 6, 1, 2, 1, 6, 1, 6, 1, 3, 1, 7, 1, 7, 1, 2, 1, 7, 1, 5, 1, 2, 1, 5, 1, 4, 1, 3, 1, 6, 1, 6, 1, 2, 1, 7, 1, 7, 1, 3, 1, 7, 1, 8, 1, 2, 1, 6, 1, 8, 1, 2, 1, 6, 1, 7, 1, 3, 1, 7, 1, 7, 1, 2, 1, 7, 1
OFFSET
0,1
COMMENTS
Index of the least significant zero digit in the primorial base expansion of A276086(n), when the rightmost digit is in the position 1.
The scatter plot shows both regular looking as well as more chaotic regions. This can be more clearly seen in related A328579. See also A328839.
FORMULA
a(n) = A328570(A276086(n)) = A257993(A276087(n)) = A055396(A328403(n)).
a(n) = A000720(A328579(n)).
a(n) = A257993(n) + A328590(n).
a(n) = A055396(A328763(n)).
For all n >= 0, a(A328761(n)) = n.
PROG
(PARI)
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A328570(n) = { my(i=1, p=2); while(n && (n%p), i++; n = n\p; p = nextprime(1+p)); (i); };
(PARI)
A257993(n) = { for(i=1, oo, if(n%prime(i), return(i))); }
CROSSREFS
Cf. A328585 (where equal with A257993), A328587 (less than), A328588 (greater than).
Cf. A328761 (the first occurrence of each n).
Cf. also array A328631 and its rows A005408, A328632, A328633, A328634, A328635, A328636 (positions of terms 1 .. 6 in this sequence).
Sequence in context: A229944 A366421 A218533 * A351613 A094741 A360653
KEYWORD
nonn,look
AUTHOR
Antti Karttunen, Oct 20 2019
STATUS
approved