The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A229944 Triangle read by rows in which T(2n-2,k) = n/k if k divides n and n/k > sqrt(n), otherwise 0, for n >= 2. Also T(2n-1,k) = k if k divides n, otherwise 0, for n >= 1. Row lengths are the same row lengths of A229940. 1
 1, 2, 1, 3, 1, 4, 1, 2, 5, 0, 1, 0, 6, 3, 1, 2, 7, 0, 1, 0, 8, 4, 1, 2, 9, 0, 1, 0, 3, 10, 5, 0, 1, 2, 0, 11, 0, 0, 1, 0, 0, 12, 6, 4, 1, 2, 3, 13, 0, 0, 1, 0, 0, 14, 7, 0, 1, 2, 0, 15, 0, 5, 1, 0, 3, 16, 8, 0, 1, 2, 0, 4, 17, 0, 0, 0, 1, 0, 0, 0, 18, 9, 6, 0, 1, 2, 3, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The positive terms are also the divisors associated with the exposed endpoints of the toothpick structure of A229950 which is related to A000005. Note that the exposed toothpick endpoints are equivalent to the vertices of the graph mentioned in A229940. See link section. LINKS Omar E. Pol, Illustration of initial terms of the divisor function (A000005), see the third picture. MAPLE Triangle begins: 1; 2; 1; 3; 1; 4; 1,  2; 5,  0; 1,  0; 6,  3; 1,  2; 7,  0; 1,  0; 8,  4; 1,  2; 9,  0; 1,  0,  3; 10, 5,  0; 1,  2,  0; 11, 0,  0; 1,  0,  0; 12, 6,  4; 1,  2,  3; 13, 0,  0; 1,  0,  0; 14, 7,  0; 1,  2,  0; 15, 0,  5; 1,  0,  3; 16, 8,  0; 1,  2,  0,  4; ... CROSSREFS Cf. A000005, A000203, A229940, A229942, A229950, A229951. Sequence in context: A064839 A255810 A210256 * A218533 A328578 A094741 Adjacent sequences:  A229941 A229942 A229943 * A229945 A229946 A229947 KEYWORD nonn,tabf AUTHOR Omar E. Pol, Oct 05 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 17:59 EST 2020. Contains 331051 sequences. (Running on oeis4.)