login
A063413
Number of cyclic subgroups of order 10 of general affine group AGL(n,2).
8
0, 0, 0, 0, 2666496, 8063483904, 23667221200896, 1546057323758223360, 374969260180817571741696, 163457085861840749434433961984, 112603564970401075916528447354044416, 152237556325944043707910988547266571141120, 824860715471760736216894023298196038268145893376
OFFSET
1,5
COMMENTS
Number of cyclic subgroups of order m in general affine group AGL(n,2) is 1/phi(m)*Sum_{d|m} mu(m/d)*b(n,d), where b(n,d) is number of solutions to x^d=1 in AGL(n,2).
FORMULA
a(n) = (A063393(n)-A063388(n)-A063385(n)+1)/4.
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Jul 17 2001
EXTENSIONS
More terms from Sean A. Irvine, Apr 23 2023
STATUS
approved