

A063413


Number of cyclic subgroups of order 10 of general affine group AGL(n,2).


8



0, 0, 0, 0, 2666496, 8063483904, 23667221200896, 1546057323758223360, 374969260180817571741696, 163457085861840749434433961984, 112603564970401075916528447354044416
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


COMMENTS

Number of cyclic subgroups of order m in general affine group AGL(n,2) is 1/phi(m)*Sum_{dm} mu(m/d)*b(n,d), where b(n,d) is number of solutions to x^d=1 in AGL(n,2).


LINKS

Table of n, a(n) for n=1..11.
V. Jovovic, Cycle index of general affine group AGL(n,2)


FORMULA

a(n) = (A063393(n)A063388(n)A063385(2)+1)/4.


CROSSREFS

Cf. A063406A063413, A063385A063393, A062710.
Sequence in context: A105380 A250911 A157840 * A210388 A251044 A151513
Adjacent sequences: A063410 A063411 A063412 * A063414 A063415 A063416


KEYWORD

nonn


AUTHOR

Vladeta Jovovic, Jul 17 2001


STATUS

approved



